22 August 2021

On Classification II: Data Science

"Statistics is the fundamental and most important part of inductive logic. It is both an art and a science, and it deals with the collection, the tabulation, the analysis and interpretation of quantitative and qualitative measurements. It is concerned with the classifying and determining of actual attributes as well as the making of estimates and the testing of various hypotheses by which probable, or expected, values are obtained. It is one of the means of carrying on scientific research in order to ascertain the laws of behavior of things - be they animate or inanimate. Statistics is the technique of the Scientific Method." (Bruce D Greenschields & Frank M Weida, "Statistics with Applications to Highway Traffic Analyses", 1952)

"It might be reasonable to expect that the more we know about any set of statistics, the greater the confidence we would have in using them, since we would know in which directions they were defective; and that the less we know about a set of figures, the more timid and hesitant we would be in using them. But, in fact, it is the exact opposite which is normally the case; in this field, as in many others, knowledge leads to caution and hesitation, it is ignorance that gives confidence and boldness. For knowledge about any set of statistics reveals the possibility of error at every stage of the statistical process; the difficulty of getting complete coverage in the returns, the difficulty of framing answers precisely and unequivocally, doubts about the reliability of the answers, arbitrary decisions about classification, the roughness of some of the estimates that are made before publishing the final results. Knowledge of all this, and much else, in detail, about any set of figures makes one hesitant and cautious, perhaps even timid, in using them." (Ely Devons, "Essays in Economics", 1961)

"Ultimately, discovery and invention are both problems of classification, and classification is fundamentally a problem of finding sameness. When we classify, we seek to group things that have a common structure or exhibit a common behavior." (Grady Booch, "Object-oriented design: With Applications", 1991)

"Many of the basic functions performed by neural networks are mirrored by human abilities. These include making distinctions between items (classification), dividing similar things into groups (clustering), associating two or more things (associative memory), learning to predict outcomes based on examples (modeling), being able to predict into the future (time-series forecasting), and finally juggling multiple goals and coming up with a good- enough solution (constraint satisfaction)." (Joseph P Bigus,"Data Mining with Neural Networks: Solving business problems from application development to decision support", 1996)

"We build models to increase productivity, under the justified assumption that it's cheaper to manipulate the model than the real thing. Models then enable cheaper exploration and reasoning about some universe of discourse. One important application of models is to understand a real, abstract, or hypothetical problem domain that a computer system will reflect. This is done by abstraction, classification, and generalization of subject-matter entities into an appropriate set of classes and their behavior." (Stephen J Mellor, "Executable UML: A Foundation for Model-Driven Architecture", 2002)

"The subject of computational complexity theory is focused on classifying problems by how hard they are. […] (1) P problems are those that can be solved by a Turing machine (TM) (deterministic) in polynomial time. (‘P’ stands for polynomial). P problems form a class of problems that can be solved efficiently. (2) NP problems are those that can be solved by non-deterministic TM in polynomial time. A problem is in NP if you can quickly (in polynomial time) test whether a solution is correct (without worrying about how hard it might be to find the solution). NP problems are a class of problems that cannot be solved efficiently. NP does not stand for 'non-polynomial'. There are many complexity classes that are much harder than NP. (3) Undecidable problems: For some problems, we can prove that there is no algorithm that always solves them, no matter how much time or space is allowed." (K V N Sunitha & N Kalyani, "Formal Languages and Automata Theory", 2015)

"The power of deep learning models comes from their ability to classify or predict nonlinear data using a modest number of parallel nonlinear steps4. A deep learning model learns the input data features hierarchy all the way from raw data input to the actual classification of the data. Each layer extracts features from the output of the previous layer." (N D Lewis, "Deep Learning Made Easy with R: A Gentle Introduction for Data Science", 2016)

"Decision trees are important for a few reasons. First, they can both classify and regress. It requires literally one line of code to switch between the two models just described, from a classification to a regression. Second, they are able to determine and share the feature importance of a given training set." (Russell Jurney, "Agile Data Science 2.0: Building Full-Stack Data Analytics Applications with Spark", 2017)

"There are other problems with Big Data. In any large data set, there are bound to be inconsistencies, misclassifications, missing data - in other words, errors, blunders, and possibly lies. These problems with individual items occur in any data set, but they are often hidden in a large mass of numbers even when these numbers are generated out of computer interactions." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

A Picture's Worth

"The drawing shows me at a glance what would be spread over ten pages in a book." (Ivan Turgenev, 1862) [2] "Sometimes, half ...