14 August 2021

On Continuity IX (Systems I)

"Consider an arbitrary figure in general position, indeterminate in the sense that it can be chosen from all such figures without upsetting the laws, conditions, and connections among the different parts of the system; suppose that given these data we have found one or more relations or properties, metric or descriptive, of that figure using the usual obvious inference (i.e., in a way regarded in certain cases as the only rigorous argument). Is it not obvious that if, preserving these very data, one begins to change the initial figure by insensible steps, or applies to some parts of the figure an arbitrary continuous motion, then is it not obvious that the properties and relations established for the initial system remain applicable to subsequent states of this system provided that one is mindful of particular changes, when, say, certain magnitudes vanish, change direction or sign, and so on - changes which one can always anticipate a priori on the basis of reliable rules." (Jean V Poncelet, "Treatise on Projective Properties of Figures", 1865)

"The difficulty involved is that the proper and adequate means of describing changes in continuous deformable bodies is the method of differential equations. […] They express mathematically the physical concept of contiguous action." (Max Born, "Einstein’s Theory of Relativity", 1922)

"True equilibria can occur only in closed systems and that, in open systems, disequilibria called ‘steady states’, or ‘flow equilibria’ are the predominant and characteristic feature. According to the second law of thermodynamics a closed system must eventually attain a time-independent equilibrium state, with maximum entropy and minimum free energy. An open system may, under certain conditions, attain a time-independent state where the system remains constant as a whole and in its phases, though there is a continuous flow of component materials. This is called a steady state. Steady states are irreversible as a whole. […] A closed system in equilibrium does not need energy for its preservation, nor can energy be obtained from it. In order to perform work, a system must be in disequilibrium, tending toward equilibrium and maintaining a steady state, Therefore the character of an open system is the necessary condition for the continuous working capacity of the organism." (Ludwig on Bertalanffy, "Theoretische Biologie: Band 1: Allgemeine Theorie, Physikochemie, Aufbau und Entwicklung des Organismus", 1932)

"The discrete change has only to become small enough in its jump to approximate as closely as is desired to the continuous change. It must further be remembered that in natural phenomena the observations are almost invariably made at discrete intervals; the 'continuity' ascribed to natural events has often been put there by the observer's imagina- tion, not by actual observation at each of an infinite number of points. Thus the real truth is that the natural system is observed at discrete points, and our transformation represents it at discrete points. There can, therefore, be no real incompatibility." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Conventional physics deals only with closed systems, i.e. systems which are considered to be isolated from their environment. [...] However, we find systems which by their very nature and definition are not closed systems. Every living organism is essentially an open system. It maintains itself in a continuous inflow and outflow, a building up and breaking down of components, never being, so long as it is alive, in a state of chemical and thermodynamic equilibrium but maintained in a so-called steady state which is distinct from the latter." (Ludwig von Bertalanffy, "General System Theory", 1968)

"If entropy must constantly and continuously increase, then the universe is remorselessly running down, thus setting a limit (a long one, to be sure) on the existence of humanity. To some human beings, this ultimate end poses itself almost as a threat to their personal immortality, or as a denial of the omnipotence of God. There is, therefore, a strong emotional urge to deny that entropy must increase." (Isaac Asimov," Asimov on Physics", 1976)

"A sudden change in the evolutive dynamics of a system (a ‘surprise’) can emerge, apparently violating a symmetrical law that was formulated by making a reduction on some (or many) finite sequences of numerical data. This is the crucial point. As we have said on a number of occasions, complexity emerges as a breakdown of symmetry (a system that, by evolving with continuity, suddenly passes from one attractor to another) in laws which, expressed in mathematical form, are symmetrical. Nonetheless, this breakdown happens. It is the surprise, the paradox, a sort of butterfly effect that can highlight small differences between numbers that are very close to one another in the continuum of real numbers; differences that may evade the experimental interpretation of data, but that may increasingly amplify in the system’s dynamics." (Cristoforo S Bertuglia & Franco Vaio, "Nonlinearity, Chaos, and Complexity: The Dynamics of Natural and Social Systems", 2003)

"However, the law of accelerating returns pertains to evolution, which is not a closed system. It takes place amid great chaos and indeed depends on the disorder in its midst, from which it draws its options for diversity. And from these options, an evolutionary process continually prunes its choices to create ever greater order."  (Ray Kurzweil, "The Singularity is Near", 2005)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Continuity: Definitions

"The Law of Continuity, as we here deal with it, consists in the idea that [...] any quantity, in passing from one magnitude to another...