01 August 2021

On Variables (1990-1999)

"The real leverage in most management situations lies in understanding dynamic complexity, not detail complexity. […] Unfortunately, most 'systems analyses' focus on detail complexity not dynamic complexity. Simulations with thousands of variables and complex arrays of details can actually distract us from seeing patterns and major interrelationships. In fact, sadly, for most people 'systems thinking' means 'fighting complexity with complexity', devising increasingly 'complex' (we should really say 'detailed') solutions to increasingly 'complex' problems. In fact, this is the antithesis of real systems thinking." (Peter M Senge, "The Fifth Discipline: The Art and Practice of the Learning Organization", 1990)

"Industrial managers faced with a problem in production control invariably expect a solution to be devised that is simple and unidimensional. They seek the variable in the situation whose control will achieve control of the whole system: tons of throughput, for example. Business managers seek to do the same thing in controlling a company; they hope they have found the measure of the entire system when they say 'everything can be reduced to monetary terms'." (Stanford Beer, "Decision and Control", 1994)

"There must be, however, cybernetic or homeostatic mechanisms for preventing the overall variables of the social system from going beyond a certain range. There must, for instance, be machinery for controlling the total numbers of the population; there must be machinery for controlling conflict processes and for preventing perverse social dynamic processes of escalation and inflation. One of the major problems of social science is how to devise institutions which will combine this overall homeostatic control with individual freedom and mobility." (Kenneth Boulding, "Economics of the coming spaceship Earth", 1994)

"Complex adaptive systems have the property that if you run them - by just letting the mathematical variable of 'time' go forward - they'll naturally progress from chaotic, disorganized, undifferentiated, independent states to organized, highly differentiated, and highly interdependent states. Organized structures emerge spontaneously. [...]A weak system gives rise only to simpler forms of self-organization; a strong one gives rise to more complex forms, like life. (J Doyne Farmer, "The Third Culture: Beyond the Scientific Revolution", 1995)

"In addition to dimensionality requirements, chaos can occur only in nonlinear situations. In multidimensional settings, this means that at least one term in one equation must be nonlinear while also involving several of the variables. With all linear models, solutions can be expressed as combinations of regular and linear periodic processes, but nonlinearities in a model allow for instabilities in such periodic solutions within certain value ranges for some of the parameters." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"Small changes in the initial conditions in a chaotic system produce dramatically different evolutionary histories. It is because of this sensitivity to initial conditions that chaotic systems are inherently unpredictable. To predict a future state of a system, one has to be able to rely on numerical calculations and initial measurements of the state variables. Yet slight errors in measurement combined with extremely small computational errors (from roundoff or truncation) make prediction impossible from a practical perspective. Moreover, small initial errors in prediction grow exponentially in chaotic systems as the trajectories evolve. Thus, theoretically, prediction may be possible with some chaotic processes if one is interested only in the movement between two relatively close points on a trajectory. When longer time intervals are involved, the situation becomes hopeless."(Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"System dynamics is a method for studying the world around us. Unlike other scientists, who study the world by breaking it up into smaller and smaller pieces, system dynamicists look at things as a whole. The central concept to system dynamics is understanding how all the objects in a system interact with one another. A system can be anything from a steam engine, to a bank account, to a basketball team. The objects and people in a system interact through 'feedback' loops, where a change in one variable affects other variables over time, which in turn affects the original variable, and so on." (Edward Yourdon, "Death March", 1997)

"The major problem of the mental model approach lies in the fact that the external world is to be represented in a highly specific way. Representing indeterminacy in terms of mental models thus poses difficulties, casting some doubt on the contention that mental models can do without variables." (Gert Rickheit & Lorenz Sichelschmidt, "Mental Models: Some Answers, Some Questions, Some Suggestions", 1999)

"There are only patterns, patterns on top of patterns, patterns that affect other patterns. Patterns hidden by patterns. Patterns within patterns. If you watch close, history does nothing but repeat itself. What we call chaos is just patterns we haven't recognized. What we call random is just patterns we can't decipher. what we can't understand we call nonsense. What we can't read we call gibberish. There is no free will. There are no variables." (Chuck Palahniuk, "Survivor", 1999)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Continuity: Definitions

"The Law of Continuity, as we here deal with it, consists in the idea that [...] any quantity, in passing from one magnitude to another...