06 August 2021

On Group Theory (2000-2009)

"By definition, a Kähler manifold is one with a complex structure (this means in particular that the coordinates changes are holomorphic for the complex coordinates) together with a Riemannian metric which has with this complex structure the best possible link, namely that multiplication of tangent vectors by unit complex numbers preserves the metric, but moreover the complex structure is invariant under parallel transport. This is equivalent to the condition that the holonomy group be included in the unitary group, hence equivalent also to ask for the existence of a 2-form of maximal rank and of zero covariant derivative."(Marcel Berger, "A Panoramic View of Riemannian Geometry", 2003)

"Combinatorics could be described as the study of arrangements of objects according to specified rules. We want to know, first, whether a particular arrangement is possible at all, and, if so, in how many different ways it can be done. Algebraic and even probabilistic methods play an increasingly important role in answering these questions. If we have two sets of arrangements with the same cardinality, we might want to construct a natural bijection between them. We might also want to have an algorithm for constructing a particular arrangement or all arrangements, as well as for computing numerical characteristics of them; in particular, we can consider optimization problems related to such arrangements. Finally, we might be interested in an even deeper study, by investigating the structural properties of the arrangements. Methods from areas such as group theory and topology are useful here, by enabling us to study symmetries of the arrangements, as well as topological properties of certain spaces associated with them, which translate into combinatorial properties." (Cristian Lenart, "The Many Faces of Modern Combinatorics", 2003)

"Group theory is a branch of mathematics that describes the properties of an abstract model of phenomena that depend on symmetry. Despite its abstract tone, group theory provides practical techniques for making quantitative and verifiable predictions about the behavior of atoms, molecules and solids." (Arthur M Lesk, "Introduction to Symmetry and Group Theory for Chemists", 2004) 

"Group theory is a powerful tool for studying the symmetry of a physical system, especially the symmetry of a quantum system. Since the exact solution of the dynamic equation in the quantum theory is generally difficult to obtain, one has to find other methods to analyze the property of the system. Group theory provides an effective method by analyzing symmetry of the system to obtain some precise information of the system verifiable with observations." (Zhong-Qi Ma, Xiao-Yan Gu, "Problems and Solutions in Group Theory for Physicists", 2004)

"Mathematicians have evolved a systematic way of thinking about symmetries that is fairly easy to grasp at the outset and a lot of fun to play with. This almost magical subject is known as group theory. […] Group theory is the mathematical language of symmetry, and it is so important that it seems to play a fundamental role in the very structure of nature. It governs the forces we see and is believed to be the organizing principle underlying all of the dynamics of elementary particles. Indeed, in modem physics the concept of symmetry serves as perhaps the most crucial concept of all. Symmetry principles are now known to dictate the basic laws of physics, to control the structure and dynamics of matter, and to define the fundamental forces in nature. Nature, at its most fundamental level, is defined by symmetry." (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)

"A group is a collection of objects, one that is alive in the sense that some underlying principle of productivity is at work engendering new members from old. […] Like many other highly structured objects, groups have parts, and in particular they may well have subgroups as parts, one group nested within a large group, kangarette to kangaroo." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"But like every profound mathematical idea, the concept of a group reveals something about the nature of the world that lies beyond the mathematician’s symbols. […] There is […] a royal road between group theory and the most fundamental processes in nature. Some groups represent - they are reflections of - continuous rotations, things that whiz around and around smoothly." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Topology: On Distortion

"Because of its foundation in topology, catastrophe theory is qualitative, not quantitative. Just as geometry treated the properties of...