"The essential feature is that we express ignorance of whether the new parameter is needed by taking half the prior probability for it as concentrated in the value indicated by the null hypothesis and distributing the other half over the range possible." (Harold Jeffreys, "Theory of Probablitity", 1939)
"The general method involved may be very simply stated. In cases where the equilibrium values of our variables can be regarded as the solutions of an extremum (maximum or minimum) problem, it is often possible regardless of the number of variables involved to determine unambiguously the qualitative behavior of our solution values in respect to changes of parameters." (Paul Samuelson, "Foundations of Economic Analysis", 1947)
"An economic system is not a linear system, and [...] this fact stands in the way of the determination of the parameters of the system by methods that presume linearity, and [...] it introduces great difficulties in the extrapolation from past behaviour for purposes of prediction. [...] Actual economic systems are constantly subjected to change and disturbances, which would result in irregularity." (Arnold Tustin, "The Mechanism of Economic System", 1953)
"A primary goal of any learning model is to predict correctly the learning curve - proportions of correct responses versus trials. Almost any sensible model with two or three free parameters, however, can closely fit the curve, and so other criteria must be invoked when one is comparing several models." (Robert R Bush & Frederick Mosteller, "A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)
"A satisfactory prediction of the sequential properties of learning data from a single experiment is by no means a final test of a model. Numerous other criteria - and some more demanding - can be specified. For example, a model with specific numerical parameter values should be invariant to changes in independent variables that explicitly enter in the model." (Robert R Bush & Frederick Mosteller,"A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)
"Clearly, if the state of the system is coupled to parameters of an environment and the state of the environment is made to modify parameters of the system, a learning process will occur. Such an arrangement will be called a Finite Learning Machine, since it has a definite capacity. It is, of course, an active learning mechanism which trades with its surroundings. Indeed it is the limit case of a self-organizing system which will appear in the network if the currency supply is generalized." (Gordon Pask, "The Natural History of Networks", 1960)
"The usefulness of the models in constructing a testable theory of the process is severely limited by the quickly increasing number of parameters which must be estimated in order to compare the predictions of the models with empirical results" (Anatol Rapoport, "Prisoner's Dilemma: A study in conflict and cooperation", 1965)
"Since all models are wrong the scientist cannot obtain a ‘correct’ one by excessive elaboration. On the contrary following William of Occam he should seek an economical description of natural phenomena. Just as the ability to devise simple but evocative models is the signature of the great scientist so overelaboration and overparameterization is often the mark of mediocrity." (George Box, "Science and Statistics", Journal of the American Statistical Association 71, 1976)
No comments:
Post a Comment