29 August 2021

On Continuity III (Sets)

"Things [...] are some of them continuous [...] which are properly and peculiarly called 'magnitudes'; others are discontinuous, in a side-by-side arrangement, and, as it were, in heaps, which are called 'multitudes,' a flock, for instance, a people, a heap, a chorus, and the like. Wisdom, then, must be considered to be the knowledge of these two forms. Since, however, all multitude and magnitude are by their own nature of necessity infinite - for multitude starts from a definite root and never ceases increasing; and magnitude, when division beginning with a limited whole is carried on, cannot bring the dividing process to an end [...] and since sciences are always sciences of limited things, and never of infinites, it is accordingly evident that a science dealing with magnitude [...] or with multitude [...] could never be formulated. […] A science, however, would arise to deal with something separated from each of them, with quantity, set off from multitude, and size, set off from magnitude." (Nicomachus, cca. 100 AD)

"Well, since paradoxes are at hand, let us see how it might be demonstrated that in a finite continuous extension it is not impossible for infinitely many voids to be found." (Galileo Galilei, "Dialogue Concerning the Two Chief World Systems", 1632)

"The above comparison of the domain R of rational numbers with a straight line has led to the recognition of the existence of gaps, of a certain incompleteness or discontinuity of the former, while we ascribe to the straight line completeness, absence of gaps, or continuity. In what then does this continuity consist? Everything must depend on the answer to this question, and only through it shall we obtain a scientific basis for the investigation of all continuous domains." (Richard Dedekind,"Stetigkeit und irrationale Zahle", 1872) 

"It seems clear that [set theory] violates against the essence of the continuum, which, by its very nature, cannot at all be battered into a single set of elements. Not the relationship of an element to a set, but of a part to a whole ought to be taken as a basis for the analysis of a continuum." (Hermann Weyl, "Riemanns geometrische Ideen, ihre Auswirkungen und ihre Verknüpfung mit der Gruppentheorie", 1925)

"But, despite their remoteness from sense experience, we do have something like a perception of the objects of set theory, as is seen from the fact that the axioms force themselves upon us as being true. I don't see any reason why we should have less confidence in this kind of perception, i.e., in mathematical intuition, than in sense perception, which induces us to build up physical theories and to expect that future sense perception will agree with them and, moreover, to believe that a question not decidable now has meaning and may be decided in future." (Kurt Gödel, "What is Cantor’s Continuum problem?", American Mathematical Monthly 54, 1947)

"Topology begins where sets are implemented with some cohesive properties enabling one to define continuity." (Solomon Lefschetz, "Introduction to Topology", 1949)

"A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"In abstract mathematics, special attention is given to particular properties of numbers. Then those properties are taken in a very pure (and primitive) form. Those properties in pure form are then assigned to a given set. Therefore, by studying in details the internal mathematical structure of a set, we should be able to clarify the meaning of original properties of the objects. Likewise, in set theory, numbers disappear and only the concept of sets and characteristic properties of sets remain." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"In view of the developments of abstract mathematics, the first thing mathematicians studied was how to extract the property of 'nearness' from the set of numbers. If the property of nearness could be extracted using a few axioms, and if it was possible to associate the extracted property with a set, then the resulting set would provide an abstract scene to study 'nearness'." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Today, most mathematicians have embraced the axiom of choice because of the order and simplicity it brings to mathematics in general. For example, the theorems that every vector space has a basis and every field has an algebraic closure hold only by virtue of the axiom of choice. Likewise, for the theorem that every sequentially continuous function is continuous. However, there are special places where the axiom of choice actually brings disorder. One is the theory of measure." (John Stillwell, "Roads to Infinity: The mathematics of truth and proof", 2010) 

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

A Picture's Worth

"The drawing shows me at a glance what would be spread over ten pages in a book." (Ivan Turgenev, 1862) [2] "Sometimes, half ...