07 August 2021

On Number Theory (1850-1899)

"The properties of the numbers known today have been mostly discovered by observation, and discovered long before their truth has been confirmed by rigid demonstrations. There are even many properties of the numbers with which we are well acquainted, but which we are not yet able to prove; only observations have led us to their knowledge. Hence we see that in the theory of numbers, which is still very imperfect, we can place our highest hopes in observations." (Leonhard Euler, cca. 1856/57)

"The Mathematics, like language, (of which indeed they may be considered a species,) comprehending under that designation the whole science of number, space, form, time, and motion, as far as it can be expressed in abstract formulas, are evidently not only one of the most useful, but one of the grandest of studies." (Edward Everett, [address] 1857)

"In the Theory of Numbers it happens rather frequently that, by some unexpected luck, the most elegant new truths spring up by induction." (Carl Friedrich Gauss, Werke, 1876)

"The concept of power, which includes as a special case the concept of whole number, that foundation of the theory of number, and which ought to be considered as the most general genuine origin of sets [Moment bei Mannigfaltigkeiten], is by no means restricted to linear point sets, but can be regarded as an attribute of any well-defined collection, whatever may be the character of its elements. [...] Set theory in the conception used here, if we only consider mathematics for now and forget other applications, includes the areas of arithmetic, function theory and geometry. It contains them in terms of the concept of power and brings them all together in a higher unity. Discontinuity and continuity are similarly considered from the same point of view and are thus measured with the same measure." (Georg Cantor, "Ober unendliche, lineare Punktmannichfaltigkeiten", 1879)

"In science nothing capable of proof ought to be accepted without proof. Though this demand seems so reasonable yet I cannot regard it as having been met even in […] that part of logic which deals with the theory of numbers. In speaking of arithmetic (algebra, analysis) as a part of logic I mean to imply that I consider the number concept entirely independent of the notions of intuition of space and time, that I consider it an immediate result from the laws of thought." (Richard Dedekind, "Was sind und was sollen die Zahlen?", 1888)

"As Gauss first pointed out, the problem of cyclotomy, or division of the circle into a number of equal parts, depends in a very remarkable way upon arithmetical considerations. We have here the earliest and simplest example of those relations of the theory of numbers to transcendental analysis, and even to pure geometry, which so often unexpectedly present themselves, and which, at first sight, are so mysterious." (George B Mathews, "Theory of Numbers", 1892)

"Strictly speaking, the theory of numbers has nothing to do with negative, or fractional, or irrational quantities, as such. No theorem which cannot be expressed without reference to these notions is purely arithmetical: and no proof of an arithmetical theorem, can be considered finally satisfactory if it intrinsically depends upon extraneous analytical theories." (George B Mathews, "Theory of Numbers", 1892)

"The combinatory analysis in my opinion holds the ground between the theory of numbers and algebra, and is the proper passage between the realms of discontinuous and continuous quantity. It would appear advisable [...] to consider the theory of partitions an important part of combinatory analysis." (Percy A MacMahon, "Combinatory Analysis: A Review of the Present State of Knowledge", Proceedings of the London Mathematical Society Vol. s1-28 No. 1, 1896)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Søren Kierkegaard - Collected Quotes

"How close men, despite all their knowledge, usually live to madness? What is truth but to live for an idea? When all is said and done,...