17 July 2022

Mathematics vs Physics (1980-1989)

 "In the real world, none of these assumptions are uniformly valid. Often people want to know why mathematics and computers cannot be used to handle the meaningful problems of society, as opposed, let us say, to the moon boondoggle and high energy-high cost physics. The answer lies in the fact that we don't know how to describe the complex systems of society involving people, we don't understand cause and effect, which is to say the consequences of decisions, and we don't even know how to make our objectives reasonably precise. None of the requirements of classical science are met. Gradually, a new methodology for dealing with these 'fuzzy' problems is being developed, but the path is not easy. (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"If doing mathematics or science is looked upon as a game, then one might say that in mathematics you compete against yourself or other mathematicians; in physics your adversary is nature and the stakes are higher." (Mark Kac, "Enigmas Of Chance", 1985)

"For the advancing army of physics, battling for many a decade with heat and sound, fields and particles, gravitation and spacetime geometry, the cavalry of mathematics, galloping out ahead, provided what it thought to be the rationale for the natural number system. Encounter with the quantum has taught us, however, that we acquire our knowledge in bits; that the continuum is forever beyond our reach. Yet for daily work the concept of the continuum has been and will continue to be as indispensable for physics as it is for mathematics." (John A Wheeler, "Hermann Weyl and the Unity of Knowledge", American Scientist Vol. 74, 1986)

"A branch of physics, once it becomes obsolete or unproductive, tends to be forever part of the past. It may be a historical curiosity, perhaps the source of some inspiration to a modern scientist, but dead physics is usually dead for good reason. Mathematics, by contrast, is full of channels and byways that seem to lead nowhere in one era and become major areas of study in another." (James Gleick, "Chaos: Making a New Science", 1987)

"We distinguish diagrammatic from sentential paper-and-pencil representations of information by developing alternative models of information-processing systems that are informationally equivalent and that can be characterized as sentential or diagrammatic. Sentential representations are sequential, like the propositions in a text. Diagrammatic representations are indexed by location in a plane. Diagrammatic representations also typically display information that is only implicit in sentential representations and that therefore has to be computed, sometimes at great cost, to make it explicit for use. We then contrast the computational efficiency of these representations for solving several. illustrative problems in mathematics and physics." (Herbert A Simon, "Why a diagram is (sometimes) worth ten thousand words", 1987)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...