"The actual science of logic is conversant at present only with things either certain, impossible, or entirely doubtful, none of which (fortunately) we have to reason on. Therefore, the true logic for this world is the calculus of Probabilities, which takes account of the magnitude of the probability which is, or ought to be, in a reasonable man's mind." (James C Maxwell, 1850)
"They say that Understanding ought to work by the rules of right reason. These rules are, or ought to he, contained in Logic; but the actual science of logic is conversant at present only with things either certain, impossible, or entirely doubtful, none of which (fortunately) we have to reason on. Therefore the true logic for this world is the calculus of Probabilities, which takes account of the magnitude of the probability which is, or ought to be, in a reasonable man's mind." (James C Maxwell, "Quetlet on Probabilities", Edinburgh Review 92, 1850)
"It is impossible by means of inanimate material agency, to derive mechanical effect from any portion of matter by cooling it below the temperature of the coldest of the surrounding objects. [Footnote: ] If this axiom be denied for all temperatures, it would have to be admitted that a self-acting machine might be set to work and produce mechanical effect by cooling the sea or earth, with no limit but the total loss of heat from the earth and sea, or in reality, from the whole material world." (William Thomson, "On the Dynamical Theory of Heat with Numerical Results Deduced from Mr Joule's Equivalent of a Thermal Unit and M. Regnault's Observations on Steam", Transactions of the Royal Society of Edinburgh, 1851)
"The chemists who uphold dualism are far from being agreed among themselves; nevertheless, all of them in maintaining their opinion, rely upon the phenomena of chemical reactions. For a long time the uncertainty of this method has been pointed out: it has been shown repeatedly, that the atoms put into movement during a reaction take at that time a new arrangement, and that it is impossible to deduce the old arrangement from the new one. It is as if, in the middle of a game of chess, after the disarrangement of all the pieces, one of the players should wish, from the inspection of the new place occupied by each piece, to determine that which it originally occupied." (Auguste Laurent, "Chemical Method", 1855)
"The prominent reason why a mathematician can be judged by none but mathematicians, is that he uses a peculiar language. The language of mathesis is special and untranslatable. In its simplest forms it can be translated, as, for instance, we say a right angle to mean a square corner. But you go a little higher in the science of mathematics, and it is impossible to dispense with a peculiar language." (Thomas Hill, "The Imagination in Mathematics", The North American Review Vol. 85 (176), 1857)
"[…] in the pursuit of physical science, the imagination should be taught to present the subject investigated in all possible and even impossible views […] (Michael Faraday, "Experimental Researches in Chemistry and Physics", 1859)
"Few will deny that even in the first scientific instruction in mathematics the most rigorous method is to be given preference over all others. Especially will every teacher prefer a consistent proof to one which is based on fallacies or proceeds in a vicious circle, indeed it will be morally impossible for the teacher to present a proof of the latter kind consciously and thus in a sense deceive his pupils. Notwithstanding these objectionable so-called proofs, so far as the foundation and the development of the system is concerned, predominate in our textbooks to the present time. Perhaps it will be answered, that rigorous proof is found too difficult for the pupil’s power of comprehension. Should this be anywhere the case, - which would only indicate some defect in the plan or treatment of the whole, - the only remedy would be to merely state the theorem in a historic way, and forego a proof with the frank confession that no proof has been found which could be comprehended by the pupil; a remedy which is ever doubtful and should only be applied in the case of extreme necessity. But this remedy is to be preferred to a proof which is no proof, and is therefore either wholly unintelligible to the pupil, or deceives him with an appearance of knowledge which opens the door to all superficiality and lack of scientific method." (Hermann G Grassmann, "Stücke aus dem Lehrbuche der Arithmetik", 1861)
"Thought is symbolical of Sensation as Algebra is of Arithmetic, and because it is symbolical, is very unlike what it symbolises. For one thing, sensations are always positive; in this resembling arithmetical quantities. A negative sensation is no more possible than a negative number. But ideas, like algebraic quantities, may be either positive or negative. However paradoxical the square of a negative quantity, the square root of an unknown quantity, nay, even in imaginary quantity, the student of Algebra finds these paradoxes to be valid operations. And the student of Philosophy finds analogous paradoxes in operations impossible in the sphere of Sense. Thus although it is impossible to feel non-existence, it is possible to think it; although it is impossible to frame an image of Infinity, we can, and do, form the idea, and reason on it with precision. (George H Lewes "Problems of Life and Mind", 1873)
"When we consider complex numbers and their geometrical representation, we leave the field of the original concept of quantity, as contained especially in the quantities of Euclidean geometry: its lines, surfaces and volumes. According to the old conception, length appears as something material which fills the straight line between its end points and at the same time prevents another thing from penetrating into its space by its rigidity. In adding quantities, we are therefore forced to place one quantity against another. Something similar holds for surfaces and solid contents. The introduction of negative quantities made a dent in this conception, and imaginary quantities made it completely impossible. Now all that matters is the point of origin and the end point; whether there is a continuous line between them, and if so which, appears to make no difference whatsoever; the idea of filling space has been completely lost. All that has remained is certain general properties of addition, which now emerge as the essential characteristic marks of quantity. The concept has thus gradually freed itself from intuition and made itself independent. This is quite unobjectionable, especially since its earlier intuitive character was at bottom mere appearance. Bounded straight lines and planes enclosed by curves can certainly be intuited, but what is quantitative about them, what is common to lengths and surfaces, escapes our intuition." (Gottlob Frege,"Methods of Calculation based on an Extension of the Concept of Quantity", 1874)
"I am convinced that it is impossible to expound the methods of induction in a sound manner, without resting them on the theory of probability. Perfect knowledge alone can give certainty, and in nature perfect knowledge would be infinite knowledge, which is clearly beyond our capacities. We have, therefore, to content ourselves with partial knowledge, - knowledge mingled with ignorance, producing doubt. (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)
"When we consider complex numbers and their geometrical representation, we leave the field of the original concept of quantity, as contained especially in the quantities of Euclidean geometry: its lines, surfaces and volumes. According to the old conception, length appears as something material which fills the straight line between its end points and at the same time prevents another thing from penetrating into its space by its rigidity. In adding quantities, we are therefore forced to place one quantity against another. Something similar holds for surfaces and solid contents. The introduction of negative quantities made a dent in this conception, and imaginary quantities made it completely impossible. Now all that matters is the point of origin and the end point; whether there is a continuous line between them, and if so which, appears to make no difference whatsoever; the idea of filling space has been completely lost. All that has remained is certain general properties of addition, which now emerge as the essential characteristic marks of quantity. The concept has thus gradually freed itself from intuition and made itself independent. This is quite unobjectionable, especially since its earlier intuitive character was at bottom mere appearance. Bounded straight lines and planes enclosed by curves can certainly be intuited, but what is quantitative about them, what is common to lengths and surfaces, escapes our intuition." (Gottlob Frege, "Methods of Calculation based on an Extension of the Concept of Quantity", 1874)
No comments:
Post a Comment