25 July 2022

On Universality II: Complex Systems I

"One of the greatest obstacles to the free and universal movement of human knowledge is the tendency that leads different kinds of knowledge to separate into systems." (Claude Bernard, "An Introduction to the Study of Experimental Medicine", 1865)

"All biologic phenomena act to adjust: there are no biologic actions other than adjustments. Adjustment is another name for Equilibrium. Equilibrium is the Universal, or that which has nothing external to derange it." (Charles Fort, The Book of the Damned, 1919)

"Thus, there exist models, principles, and laws that apply to generalized systems or their subclasses, irrespective of their particular kind, the nature of their component elements, and the relations or 'forces' between them. It seems legitimate to ask for a theory, not of systems of a more or less special kind, but of universal principles applying to systems in general. In this way we postulate a new discipline called General System Theory. Its subject matter is the formulation and derivation of those principles which are valid for ‘systems’ in general." (Ludwig von Bertalanffy, "General System Theory: Foundations, Development, Applications", 1968)

"In general, one might define a complex of semantic components connected by logical constants as a concept. The dictionary of a language is then a system of concepts in which a phonological form and certain syntactic and morphological characteristics are assigned to each concept. This system of concepts is structured by several types of relations. It is supplemented, furthermore, by redundancy or implicational rules […] representing general properties of the whole system of concepts. […] At least a relevant part of these general rules is not bound to particular languages, but represents presumably universal structures of natural languages. They are not learned, but are rather a part of the human ability to acquire an arbitrary natural language." (Manfred Bierwisch, "Semantics", 1970)

"The rehabilitation of order as a universal principle, however, suggested at the same time that orderliness by itself is not sufficient to account for the nature of organized systems in general or for those created by man in particular." (Rudolf Arnheim, "Entropy and Art: An Essay on Disorder and Order", 1974)

"Cellular automata are discrete dynamical systems with simple construction but complex self-organizing behaviour. Evidence is presented that all one-dimensional cellular automata fall into four distinct universality classes. Characterizations of the structures generated in these classes are discussed. Three classes exhibit behaviour analogous to limit points, limit cycles and chaotic attractors. The fourth class is probably capable of universal computation, so that properties of its infinite time behaviour are undecidable." (Stephen Wolfram, "Nonlinear Phenomena, Universality and complexity in cellular automata", Physica 10D, 1984)

"Cellular automata are mathematical models for complex natural systems containing large numbers of simple identical components with local interactions. They consist of a lattice of sites, each with a finite set of possible values. The value of the sites evolve synchronously in discrete time steps according to identical rules. The value of a particular site is determined by the previous values of a neighbourhood of sites around it." (Stephen Wolfram, "Nonlinear Phenomena, Universality and complexity in cellular automata", Physica 10D, 1984)

"Cellular automata may be considered as discrete dynamical systems. In almost all cases, cellular automaton evolution is irreversible. Trajectories in the configuration space for cellular automata therefore merge with time, and after many time steps, trajectories starting from almost all initial states become concentrated onto 'attractors'. These attractors typically contain only a very small fraction of possible states. Evolution to attractors from arbitrary initial states allows for 'self-organizing' behaviour, in which structure may evolve at large times from structureless initial states. The nature of the attractors determines the form and extent of such structures." (Stephen Wolfram, "Nonlinear Phenomena, Universality and complexity in cellular automata", Physica 10D, 1984)

"The concept of universal connection. Nothing in the world stands by itself. Every object is a link in an endless chain and is thus connected with all the other links. And this chain of the universe has never been broken; it unites all objects and processes in a single whole and thus has a universal character. We cannot move so much as our little finger without 'disturbing' the whole universe. The life of the universe, its history lies in an infinite web of connections." (Alexander Spirkin, "Dialectical Materialism", 1983)

"Fuzzy systems are excellent tools for representing heuristic, commonsense rules. Fuzzy inference methods apply these rules to data and infer a solution. Neural networks are very efficient at learning heuristics from data. They are 'good problem solvers' when past data are available. Both fuzzy systems and neural networks are universal approximators in a sense, that is, for a given continuous objective function there will be a fuzzy system and a neural network which approximate it to any degree of accuracy." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Douglas T Ross - Collected Quotes

"Automatic design has the computer do too much and the human do too little, whereas automatic programming has the human do too much and...