28 July 2022

On Simultaneity IV: Complex Systems

"[Disorganized complexity] is a problem in which the number of variables is very large, and one in which each of the many variables has a behavior which is individually erratic, or perhaps totally unknown. However, in spite of this helter-skelter, or unknown, behavior of all the individual variables, the system as a whole possesses certain orderly and analyzable average properties. [...] [Organized complexity is] not problems of disorganized complexity, to which statistical methods hold the key. They are all problems which involve dealing simultaneously with a sizable number of factors which are interrelated into an organic whole. They are all, in the language here proposed, problems of organized complexity." (Warren Weaver, "Science and Complexity", American Scientist Vol. 36, 1948)

"One might think one could measure a complex dynamical variable by measuring separately its real and pure imaginary parts. But this would involve two measurements or two observations, which would be alright in classical mechanics, but would not do in quantum mechanics, where two observations in general interfere with one another - it is not in general permissible to consider that two observations can be made exactly simultaneously, and if they are made in quick succession the first will usually disturb the state of the system and introduce an indeterminacy that will affect the second." (Ernst C K Stückelberg, "Quantum Theory in Real Hilbert Space", 1960)

"My presentation of a general theory of living systems will employ two sorts of spaces in which they may exist, physical or geographical space and conceptual or abstract space [...] The characteristics and constraints of physical space affect the action of all concrete systems, living and nonliving [...] Physical space is a common space because it is the only space in which all concrete systems, living and nonliving, exist (though some may exist in other spaces simultaneously). Physical space is shared by all scientific observers, and all scientific data must be collected in it. This is equally true for natural science and behavioral science." (James G Miller, "Living Systems", 1978)

"If we want to solve problems effectively [...] we must keep in mind not only many features but also the influences among them. Complexity is the label we will give to the existence of many interdependent variables in a given system. The more variables and the greater their interdependence, the greater the system's complexity. Great complexity places high demands on a planner's capacity to gather information, integrate findings, and design effective actions. The links between the variables oblige us to attend to a great many features simultaneously, and that, concomitantly, makes it impossible for us to undertake only one action in a complex system." (Dietrich Dorner, "The Logic of Failure: Recognizing and Avoiding Error in Complex Situations", 1989)

"[…] it would seem that randomness and order are both inevitable parts of any description of reality. When we try to understand some particular phenomenon we are, in effect, banishing disorder. Before a piece of mathematics is understood it stands as a random collection of data. After it is understood, it is ordered, manageable. […] Both properties - the randomness and the order - are present simultaneously. This is what should be called complexity. Complexity is ordered randomness." (William Byers, "How Mathematicians Think: Using Ambiguity, Contradiction, and Paradox to Create mathematics", 2007)

"Bounded rationality simultaneously constrains the complexity of our cognitive maps and our ability to use them to anticipate the system dynamics. Mental models in which the world is seen as a sequence of events and in which feedback, nonlinearity, time delays, and multiple consequences are lacking lead to poor performance when these elements of dynamic complexity are present. Dysfunction in complex systems can arise from the misperception of the feedback structure of the environment. But rich mental models that capture these sources of complexity cannot be used reliably to understand the dynamics. Dysfunction in complex systems can arise from faulty mental simulation-the misperception of feedback dynamics. These two different bounds on rationality must both be overcome for effective learning to occur. Perfect mental models without a simulation capability yield little insight; a calculus for reliable inferences about dynamics yields systematically erroneous results when applied to simplistic models." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"[…] it would seem that randomness and order are both inevitable parts of any description of reality. When we try to understand some particular phenomenon we are, in effect, banishing disorder. Before a piece of mathematics is understood it stands as a random collection of data. After it is understood, it is ordered, manageable. […] Both properties - the randomness and the order - are present simultaneously. This is what should be called complexity. Complexity is ordered randomness." (William Byers, "How Mathematicians Think: Using Ambiguity, Contradiction, and Paradox to Create mathematics", 2007)

"Cellular Automata (CA) are discrete, spatially explicit extended dynamic systems composed of adjacent cells characterized by an internal state whose value belongs to a finite set. The updating of these states is made simultaneously according to a common local transition rule involving only a neighborhood of each cell." (Ramon Alonso-Sanz, "Cellular Automata with Memory", 2009)

"In the network society, the space of flows dissolves time by disordering the sequence of events and making them simultaneous in the communication networks, thus installing society in structural ephemerality: being cancels becoming." (Manuel Castells, "Communication Power", 2009)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Alexander von Humboldt - Collected Quotes

"Whatever relates to extent and quantity may be represented by geometrical figures. Statistical projections which speak to the senses w...