17 July 2022

Mathematics vs Physics (1960-1969)

"The enormous usefulness of mathematics in natural sciences is something bordering on the mysterious, and there is no rational explanation for it. It is not at all natural that ‘laws of nature’ exist, much less that man is able to discover them. The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve." (Eugene P Wigner, "The Unreasonable Effectiveness of Mathematics in the Natural Sciences," 1960)

"Books on physics are full of complicated mathematical formulae. But thought and ideas, not formulas, are the beginning of every physical theory." (Leopold Infeld,"The Evolution of Physics", 1961)

"The mathematicians and physics men Have their mythology; they work alongside the truth, Never touching it; their equations are false But the things work. Or, when gross error appears, They invent new ones; they drop the theory of waves In universal ether and imagine curved space." (Robinson Jeffers," The Beginning and the End and Other Poems, The Great Wound", 1963)

"Just by studying mathematics we can hope to make a guess at the kind of mathematics that will come into the physics of the future." (Paul A M Dirac , "The Evolution of the Physicist’s Picture of Nature ", Scientific American, 1963)

"We wish to see [...] the typical attitude of the scientist who uses mathematics to understand the world around us [...] In the solution of a problem [...] there are typically three phases. The first phase is entirely or almost entirely a matter of physics; the third, a matter of mathematics; and the intermediate phase, a transition from physics to mathematics. The first phase is the formulation of the physical hypothesis or conjecture; the second, its translation into equations; the third, the solution of the equations. Each phase calls for a different kind of work and demands a different attitude. (George Pólya, "Mathematical Methods in Science", 1963)

"In its efforts to learn as much as possible about nature, modem physics has found that certain things can never be ‘known’ with certainty. Much of our knowledge must always remain uncertain. The most we can know is in terms of probabilities." (Richard P Feynman,"The Feynman Lectures on Physics", 1964)   

"It bothers me that, according to the laws as we understand them today, it takes a computing machine an infinite number of logical operations to figure out what goes on in no matter how tiny a region of space, and no matter how tiny a region of time. How can all that be going on in that tiny space? Why should it take an infinite amount of logic to figure out what a tiny piece of space-time is going to do? So I have often made the hypothesis that ultimately physics will not require a mathematical statement, that in the end the machinery will be revealed and the laws will turn out to be simple, like the checker board with all its apparent complexities." (Richard P Feynman, "The Character of Physical Law", 1965)

"Pedantry and sectarianism aside, the aim of theoretical physics is to construct mathematical models such as to enable us, from the use of knowledge gathered in a few observations, to predict by logical processes the outcomes in many other circumstances. Any logically sound theory satisfying this condition is a good theory, whether or not it be derived from 'ultimate' or 'fundamental' truth. It is as ridiculous to deride continuum physics because it is not obtained from nuclear physics as it would be to reproach it with lack of foundation in the Bible." (Clifford Truesdell & Walter Noll, "The Non-Linear Field Theories of Mechanics", 1965)

"When the problems in physics become difficult we may often look to the mathematician who may already have studied such things and have prepared a line of reasoning for us to follow. On the other hand they may not have, in which case we have to invent our own line of reasoning, which we then pass back to the mathematician." (Richard Feynman,"The Character of Physical Law", 1965)

"Mathematicians, on the other hand, often regard all of physics as a kind of divine revelation or trickery, where mathematical morals are irrelevant, so that if they enter this red-light district at all, it is only to get what they want as cheaply as possible before returning to the respectability of problems purely mathematical in the older sense: analysis, probability, differential geometry, etc." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"It is impossible, and it has always been impossible, to grasp the meaning of what we nowadays call physics independently of its mathematical form." (Jacob Klein, "Greek Mathematical Thought and the Origin of Algebra", 1968)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...