"Nature, in the manifold signification of the word - whether considered as the universality of all that is and ever will be - as the inner moving force of all phenomena, or as their mysterious prototype - reveals itself to the simple mind and feelings of man as something earthly, and closely allied to himself."(Alexander von Humboldt, "Cosmos: A Sketch of a Physical Description of the Universe", 1845)
"Any opinion as to the form in which the energy of gravitation exists in space is of great importance, and whoever can make his opinion probable will have, made an enormous stride in physical speculation. The apparent universality of gravitation, and the equality of its effects on matter of all kinds are most remarkable facts, hitherto without exception; but they are purely experimental facts, liable to be corrected by a single observed exception. We cannot conceive of matter with negative inertia or mass; but we see no way of accounting for the proportionality of gravitation to mass by any legitimate method of demonstration. If we can see the tails of comets fly off in the direction opposed to the sun with an accelerated velocity, and if we believe these tails to be matter and not optical illusions or mere tracks of vibrating disturbance, then we must admit a force in that direction, and we may establish that it is caused by the sun if it always depends upon his position and distance." (James C Maxwell, [Letter to William Huggins] 1868)
"[...] there is a universal principle, operating in every department of nature and at every stage of evolution, which is conservative, creative and constructive. [...] I have at last fixed upon the word synergy, as the term best adapted to express its twofold character of ‘energy’ and ‘mutuality’ or the systematic and organic ‘working together’ of the antithetical forces of nature. [...] Synergy is a synthesis of work, or synthetic work, and this is what is everywhere taking place. It may be said to begin with the primary atomic collision in which mass, motion, time, and space are involved, and to find its simplest expression in the formula for force, which implies a plurality of elements, and signifies an interaction of these elements." (Lester F Ward, "Pure Sociology", 1903)
"[…] there is a special relationship, a profound affinity between mathematics and tektology. Mathematical laws do not refer to a particular area of natural phenomena, as the laws of the other, special, sciences do, but to each and all phenomena, considered merely in their quantitative aspect; mathematics is in its own way universal, like tektology." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)
"It should therewith be remembered that as mathematics studies neutral complexes, mathematical thinking is an organizational process and hence its methods, as well as the methods of all other sciences and those of any practice, fall within the province of a general tektology. Tektology is a unique science which must not only work out its own methods by itself but must study them as well; therefore it is the completion of the cycle of sciences." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)
"[...] our knowledge of the external world must always consist of numbers, and our picture of the universe - the synthesis of our knowledge - must necessarily be mathematical in form. All the concrete details of the picture, the apples, the pears and bananas, the ether and atoms and electrons, are mere clothing that we ourselves drape over our mathematical symbols - they do not belong to Nature, but to the parables by which we try to make Nature comprehensible." (Sir James H Jeans, "The New World-Picture of Modern Physics", Supplement to Nature, Vol. 134 (3384), 1934)
"This, however, is very speculative; the point of interest for our present enquiry is that physical reality is built up, apparently, from a few fundamental types of units whose properties determine many of the properties of the most complicated phenomena, and this seems to afford a sufficient explanation of the emergence of analogies between mechanisms and similarities of relation-structure among these combinations without the necessity of any theory of objective universals." (Kenneth Craik, "The Nature of Explanation", 1943)
"How can it be that writing down a few simple and elegant formulae, like short poems governed by strict rules such as those of the sonnet or the waka, can predict universal regularities of Nature? Perhaps we see equations as simple because they are easily expressed in terms of mathematical notation already invented at an earlier stage of development of the science, and thus what appears to us as elegance of description really reflects the interconnectedness of Nature’s laws at different levels." (Murray Gell-Mann, 1969)
"To give a causal explanation of an event means to deduce a statement which describes it, using as premises of the deduction one or more universal laws, together with certain singular statements, the initial conditions. [...] We have thus two different kinds of statement, both of which are necessary ingredients of a complete causal explanation." (Karl Popper, "The Philosophy of Karl Popper", 1974)
"What will prove altogether remarkable is that some very simple schemes to produce erratic numbers behave identically to some of the erratic aspects of natural phenomena." (Mitchell Figenbaum, "Universal Behavior in Nonlinear Systems", 1980)
"Theories represent the phenomena just in case their models, in some sense, 'share the same structure' with those phenomena - that, in slogan form, is what is called the semantic view of theories. [...] Embedding, that means displaying an isomorphism to selected parts of those models. Here is the argument to present the first challenge. For a phenomenon to be embeddable in a model, that means that it is isomorphic to a part of that model. So the two, the phenomenon and the relevant model part must have the same structure. Therefore, the phenomenon must have a structure, and this shared structure is obviously not itself a physical, concrete individual - so what is implied here is something of the order of realism about universals." (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)
"There is no unique, global, and universal relation of identity for abstract objects. [...] Abstract objects are of different sorts and this should mean, almost by definition, that there is no global, universal identity for sorts. Each sort X is equipped with an internal relation of identity but there is no identity relation that would apply to all sorts." (Jean-Pierre Marquis," Categorical foundations of mathematics, or how to provide foundations for abstract mathematics", The Review of Symbolic Logic Vol. 6 (1), 2012)
"Direct experience is inherently too limited to form an adequate foundation either for theory or for application. At the best it produces an atmosphere that is of value in drying and hardening the structure of thought. The greater value of indirect experience lies in its greater variety and extent. History is universal experience, the experience not of another, but of many others under manifold conditions." (Basil L Hart, "Why Don't We Learn from History?", 2015)
"The man of science will acts as if this world were an absolute whole controlled by laws independent of his own thoughts or act; but whenever he discovers a law of striking simplicity or one of sweeping universality or one which points to a perfect harmony in the cosmos, he will be wise to wonder what role his mind has played in the discovery, and whether the beautiful image he sees in the pool of eternity reveals the nature of this eternity, or is but a reflection of his own mind." (Tobias Dantzig)
No comments:
Post a Comment