"The calculus is a theory of continuous change - processes that move smoothly and that do not stop, jerk, interrupt themselves, or hurtle over gaps in space and time. The supreme example of a continuous process in nature is represented by the motion of the planets in the night sky as without pause they sweep around the sun in elliptical orbits; but human consciousness is also continuous, the division of experience into separate aspects always coordinated by some underlying form of unity, one that we can barely identify and that we can describe only by calling it continuous." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)
"In both quantum theory and general relativity, we encounter predictions of physically sensible quantities becoming infinite. This is likely the way that nature punishes impudent theorists who dare to break her unity. […] If infinities are signs of missing unification, a unified theory will have none. It will be what we call a finite theory." (Lee Smolin, "The Trouble with Physics: The Rise of String Theory, The Fall of a Science and What Comes Next", 2006)
"By interlinking causes, by searching always for unity in the face of superficial diversity, modern scientific explanations prize depth above breadth. A deep and narrow theory can, and often does, graduate to become a deep and broad one. A broad and shallow theory never does." (John D Barrow, "New Theories of Everything", 2007)
"A science presents us with representations of the phenomena through artifacts, both abstract, such as theories and mathematical models, and concrete such as graphs, tables, charts, and ‘table-top’ models. These representations do not form a haphazard compilation though any unity, in the range of representations made available, is visible mainly at the more abstract levels." (Bas C van Fraassen, "Scientific Representation: Paradoxes of Perspective", 2008)
"Category theory has developed classically, beginning with definitions and axioms and proceeding to a long list of theorems. Category theory is not topology (and so will not be described here), but it can be used to understand some of the relationships that exist among classes of topological spaces. It can be used to bring unity to diversity. [...] the theory of categories is not complete, it may not be completable, but it is a step forward in understanding foundational questions in mathematics." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)
No comments:
Post a Comment