30 September 2023

Complex Systems VIII

"For understanding the general principles of dynamic systems, therefore, the concept of feedback is inadequate in itself. What is important is that complex systems, richly cross-connected internally, have complex behaviours, and that these behaviours can be goal-seeking in complex patterns." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"[…] a complex system is incomprehensible unless we can simplify it by using alternative levels of description." (John L Casti, "On System Complexity: Identification, Measurement, and Management" [in "Complexity, Language, and Life: Mathematical Approaches"] 1986)

"[…] complexity emerges from simplicity when alternative descriptions of a system are not reducible to each other. For a given observer, the more such inequivalent descriptions he or she generates, the more complex the system appears. Conversely, a complex system can be simplified in one of two ways: reduce the number of potential descriptions (by restricting the observer's means of interaction with the system) and/or use a coarser notion of system equivalence, thus reducing the number of equivalence classes." (John L Casti, "On System Complexity: Identification, Measurement, and Management" [in "Complexity, Language, and Life: Mathematical Approaches"] 1986)

"Since most understanding and virtually all control is based upon a model (mental, mathematical, physical, or otherwise) of the system under study, the simplification imperative translates into a desire to obtain an equivalent, but reduced, representation of the original model of the system. This may involve omitting some of the original variables, aggregating others, ignoring weak couplings, regarding slowly changing variables as constants, and a variety of other subterfuges. All of these simplification techniques are aimed at reducing the degrees of freedom that the system has at its disposal to interact with its environment. A theory of system complexity would give us knowledge as to the limitations of the reduction process." (John L Casti, "On System Complexity: Identification, Measurement, and Management" [in "Complexity, Language, and Life: Mathematical Approaches"] 1986)

"If we want to solve problems effectively […] we must keep in mind not only many features but also the influences among them. Complexity is the label we will give to the existence of many interdependent variables in a given system. The more variables and the greater their interdependence, the greater the system's complexity. Great complexity places high demands on a planner's capacity to gather information, integrate findings, and design effective actions. The links between the variables oblige us to attend to a great many features simultaneously, and that, concomitantly, makes it impossible for us to undertake only one action in a complex system." (Dietrich Dorner, "The Logic of Failure: Recognizing and Avoiding Error in Complex Situations", 1989)

"Distributed control means that the outcomes of a complex adaptive system emerge from a process of self-organization rather than being designed and controlled externally or by a centralized body." (Brenda Zimmerman et al, "A complexity science primer", 1998)

"Learning is a multi-faceted, integrated process where changes with any one element alters the larger network. Knowledge is subject to the nuances of complex, adaptive systems." (George Siemens, "Knowing Knowledge", 2006)

"Great powers are, I would suggest, complex systems, made up of a very large number of interacting components that are asymmetrically organized. […] They operate somewhere between order and disorder - on the 'edge of chaos' […] Such systems can appear to operate quite stably for some time; they seem to be in equilibrium but are, in fact, constantly adapting. But there comes a moment when complex systems 'go critical'. A very small trigger can set off a 'phase transition' from a benign equilibrium to a crisis […]" (Niall Ferguson, Foreign Affairs, 2010)

"Complex systems are networks made of a number of components that interact with each other, typically in a nonlinear fashion. Complex systems may arise and evolve through self-organization, such that they are neither completely regular nor completely random, permitting the development of emergent behavior at macroscopic scales." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

On Randomness XXVIII (Causality)

"The universal cause is one thing, a particular cause another. An effect can be haphazard with respect to the plan of the second, but not of the first. For an effect is not taken out of the scope of one particular cause save by another particular cause which prevents it, as when wood dowsed with water, will not catch fire. The first cause, however, cannot have a random effect in its own order, since all particular causes are comprehended in its causality. When an effect does escape from a system of particular causality, we speak of it as fortuitous or a chance happening […]" (Thomas Aquinas, "Summa Theologica", cca. 1266-1273)

"Perhaps randomness is not merely an adequate description for complex causes that we cannot specify. Perhaps the world really works this way, and many events are uncaused in any conventional sense of the word." (Stephen Jay Gould, "Hen's Teeth and Horse's Toes", 1983)

"Chaos demonstrates that deterministic causes can have random effects […] There's a similar surprise regarding symmetry: symmetric causes can have asymmetric effects. […] This paradox, that symmetry can get lost between cause and effect, is called symmetry-breaking. […] From the smallest scales to the largest, many of nature's patterns are a result of broken symmetry; […]" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"We use mathematics and statistics to describe the diverse realms of randomness. From these descriptions, we attempt to glean insights into the workings of chance and to search for hidden causes. With such tools in hand, we seek patterns and relationships and propose predictions that help us make sense of the world." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

On Plausibility V

"Proof is an idol before whom the pure mathematician tortures himself. In physics we are generally content to sacrifice before the lesser shrine of Plausibility." (Sir Arthur S Eddington, "The Nature of the Physical World", 1928)

"[Science fiction is] that class of prose narrative treating of a situation that could not arise in the world we know, but which is hypothesised on the basis of some innovation in science or technology, or pseudo-science or pseudo-technology, whether human or extra-terrestrial in origin. It is distinguished from pure fantasy by its need to achieve verisimilitude and win the 'willing suspension of disbelief' through scientific plausibility." (Kingsley Amis, "New Maps of Hell", 1960)

"[…] the social scientist who lacks a mathematical mind and regards a mathematical formula as a magic recipe, rather than as the formulation of a supposition, does not hold forth much promise. A mathematical formula is never more than a precise statement. It must not be made into a Procrustean bed - and that is what one is driven to by the desire to quantify at any cost. It is utterly implausible that a mathematical formula should make the future known to us, and those who think it can, would once have believed in witchcraft. The chief merit of mathematicization is that it compels us to become conscious of what we are assuming." (Bertrand de Jouvenel, "The Art of Conjecture", 1967)

"Mathematical knowledge is fixed securely by means of demonstrative reasoning, but the approaches to such knowledge are strewn with plausible modes of reasoning." (Yakov Khurgin, "Did You Say Mathematics?", 1974)

"The degree of confirmation assigned to any given hypothesis is sensitive to properties of the entire belief system [...] simplicity, plausibility, and conservatism are properties that theories have in virtue of their relation to the whole structure of scientific beliefs taken collectively. A measure of conservatism or simplicity would be a metric over global properties of belief systems." (Jerry Fodor, "Modularity of Mind", 1983)

"Therefore, mathematical ecology does not deal directly with natural objects. Instead, it deals with the mathematical objects and operations we offer as analogs of nature and natural processes. These mathematical models do not contain all information about nature that we may know, but only what we think are the most pertinent for the problem at hand. In mathematical modeling, we have abstracted nature into simpler form so that we have some chance of understanding it. Mathematical ecology helps us understand the logic of our thinking about nature to help us avoid making plausible arguments that may not be true or only true under certain restrictions. It helps us avoid wishful thinking about how we would like nature to be in favor of rigorous thinking about how nature might actually work. (John Pastor, "Mathematical Ecology of Populations and Ecosystems", 2008)

"Since we cannot completely eliminate uncertainty, we need to model it. In real life when we are faced with uncertainty, we use plausible reasoning. We adjust our belief about something, based on the occurrence or nonoccurrence of something else." (William M Bolstad & James M Curran, "Introduction to Bayesian Statistics" 3rd Ed., 2017)


On Plausibility IV

"Devising the plan of the solution, we should not be too afraid of merely plausible, heuristic reasoning. Anything is right that leads to the right idea. But we have to change this standpoint when we start carrying out the plan and then we should accept only conclusive, strict arguments." (George Pólya, "How to solve it", 1945)

"Heuristic reasoning is reasoning not regarded as final and strict but as provisional and plausible only, whose purpose is to discover the solution of the present problem. We are often obliged to use heuristic reasoning. We shall attain complete certainty when we shall have obtained the complete solution, but before obtaining certainty we must often be satisfied with a more or less plausible guess. We may need the provisional before we attain the final. We need heuristic reasoning when we construct a strict proof as we need scaffolding when we erect a building." (George Pólya, "How to solve it", 1945)

"From the outset it was clear that the two kinds of reasoning have different tasks. From the outset. they appeared very different: demonstrative reasoning as definite, final, 'machinelike'; and plausible reasoning as vague, provisional, specifically 'human'. Now we may see the difference a little more distinctly. In opposition to demonstrative inference, plausible inference leaves indeterminate a highly relevant point: the 'strength' or the 'weight' of the conclusion. This weight may depend not only on clarified grounds such as those expressed in the premises, hut also on unclarified unexpressed grounds somewhere on the background of the person who draws the conclusion. A person has a background, a machine has not. Indeed, you can build a machine to draw demonstrative conclusions for you, but I think you can never build a machine that will draw plausible inferences." (George Pólya, "Mathematics and Plausible Reasoning", 1954)

"We secure our mathematical knowledge by demonstrative reasoning, but we support our conjectures by plausible reasoning. A mathematical proof is demonstrative reasoning, but the inductive evidence of the physicist, the circumstantial evidence of the lawyer, the documentary evidence of the historian, and the statistical evidence of the economist belong to plausible reasoning." (George Pólya, "Mathematics and Plausible Reasoning", 1954)

"On the other hand, the 'subjective' school of thought, regards probabilities as expressions of human ignorance; the probability of an event is merely a formal expression of our expectation that the event will or did occur, based on whatever information is available. To the subjectivist, the purpose of probability theory is to help us in forming plausible conclusions in cases where there is not enough information available to lead to certain conclusions; thus detailed verification is not expected. The test of a good subjective probability distribution is does it correctly represent our state of knowledge as to the value of x?" (Edwin T Jaynes, "Information Theory and Statistical Mechanics" I, 1956)

"It is widely recognized that the word 'probability' has two very different main senses. In its original meaning, which is still the popular meaning, the word is roughly synonymous with plausibility. It has reference to reasonableness of belief or expectation. If 'logic' is interpreted in a broad sense, then this kind of probability belongs to logic. In its other meaning, which is that usually attributed to it by statisticians, the word has reference to a type of physical phenomena, known as random or chance phenomena. If 'physics' is interpreted in a broad sense, then this kind of probability belongs to physics. Physical probabilities can be determined empirically by noting the proportion of successes in some trials. (The determination is inexact and unsure, like all other physical determinations.)" (Francis J Anscombe & Robert J Aumann, "A Definition of Subjective Probability", The Annals of Mathematical Statistics Vol. 34 (1), 1963)

"Probability theory, for us, is not so much a part of mathematics as a part of logic, inductive logic, really. It provides a consistent framework for reasoning about statements whose correctness or incorrectness cannot be deduced from the hypothesis. The information available is sufficient only to make the inferences 'plausible' to a greater or lesser extent." (Ralph Baierlein, "Atoms and Information Theory: An Introduction to Statistical Mechanics", 1971)

"By common consensus in the mathematical world, a good proof displays three essential characteristics: a good proof is (1) convincing, (2) surveyable, and (3) formalizable. The first requirement means simply that most mathematicians believe it when they see it. […] Most mathematicians and philosophers of mathematics demand more than mere plausibility, or even belief. A proof must be able to be understood, studied, communicated, and verified by rational analysis. In short, it must be surveyable. Finally, formalizability means we can always find a suitable formal system in which an informal proof can be embedded and fleshed out into a formal proof." (John L Casti, "Mathematical Mountaintops: The Five Most Famous Problems of All Time", 2001)

"Given any collection of infinite sets the Axiom of Choice tells us that there exists a set which has one element in common with each of the sets in the collection. Choice, which seems to be an intuitively sound principle, is equivalent to the much less plausible statement that every set has a well-ordering. Although many tried to prove Choice, they only seemed to be able to find equivalent statements which were just as difficult to prove." (Barnaby Sheppard, "The Logic of Infinity", 2014)

"Objections to the Axiom of Choice, either the strong or the weak version, are typically either philosophical, based on the intuitive temporal implausibility of making an infinite number of choices, or on the non-constructive nature of the axiom, or are based on a peculiar identification of continuum-based models of physics with the physical objects being modelled; properties of the model which are implied by the Axiom of Choice are deemed to be counterintuitive because the physical objects they model don’t have these properties. Motivated by these objections, or just for curiosity, several alternatives to Choice have been explored." (Barnaby Sheppard, "The Logic of Infinity", 2014)

29 September 2023

On Machines XIV: Turing Machines

"A Universal Turing Machine is an ideal mathematical object; it represents a formal manipulation of symbols and owes allegiance to criteria of logical consistency but not to physical laws and constraints. Thus, for example, physical variables play no essential role in the concept of algorithm. In reality, however, every logical operation occurs at a minimum cost of KT of energy dissipation (where K is Boltzman's constant and T is temperature) and, in fact, occurs at a much higher cost to insure reliability." (Claudia Carello et al, "The Inadequacies of the Computer Metaphor", 1982)

"The Turing test is a popular approach, but it flies in the face of the standard scientific method which starts with the easier problems before facing the harder ones. Thus I soon raised the question with myself, 'What is the smallest or close to the smallest program I would believe could think?' Clearly if the program were divided into two parts then neither piece could think. I tried thinking about it each night as I put my head on the pillow to sleep, and after a year of considering the problem and getting nowhere I decided it was the wrong question! Perhaps 'thinking' is not a yes-no thing, but maybe it is a matter of degree." (Richard Hamming, "The Art of Doing Science and Engineering: Learning to Learn", 1997)

"A large part of Turing's genius was to show that the very primitive type of abstract computing machine he invented is actually the most general type of computer imaginable. In fact, every real-life computer that's ever been built is just a special case that materially embodies the machine that Turing dreamed up." (John L Casti, "Mathematical Mountaintops: The Five Most Famous Problems of All Time", 2001)

"[…] Turing machines are definitely not machines in the everyday sense of being material devices. Rather they are "paper computers," completely specified by their programs. Thus, when we use the term machine in what follows, the reader should read program or algorithm (i.e., software) and put all notions of hardware out of sight and out of mind." (John L Casti, "Mathematical Mountaintops: The Five Most Famous Problems of All Time", 2001)

"What's important about the Turing machine from a theoretical point of view is that it represents a formal mathematical object. So with the invention of the Turing machine, for the first time we had a well-defined notion of what it means to compute something." (John L Casti, "Mathematical Mountaintops: The Five Most Famous Problems of All Time", 2001)

"The subject of computational complexity theory is focused on classifying problems by how hard they are. […] (1) P problems are those that can be solved by a Turing machine (TM) (deterministic) in polynomial time. (‘P’ stands for polynomial). P problems form a class of problems that can be solved efficiently. (2) NP problems are those that can be solved by non-deterministic TM in polynomial time. A problem is in NP if you can quickly (in polynomial time) test whether a solution is correct (without worrying about how hard it might be to find the solution). NP problems are a class of problems that cannot be solved efficiently. NP does not stand for 'non-polynomial'. There are many complexity classes that are much harder than NP. (3) Undecidable problems: For some problems, we can prove that there is no algorithm that always solves them, no matter how much time or space is allowed." (K V N Sunitha & N Kalyani, "Formal Languages and Automata Theory", 2015)

28 September 2023

On Numbers: Natural Numbers

"These Exponents they call Logarithms, which are Artificial Numbers, so answering to the Natural Numbers, as that the addition and Subtraction of these, answers to the Multiplication and Division of the Natural Numbers. By this means, (the Tables being once made) the Work of Multiplication and Division is performed by Addition and Subtraction; and consequently that of Squaring and Cubing, by Duplication and Triplication; and that of Extracting the Square and Cubic Root, by Bisection and Trisection; and the like in the higher Powers." (John Wallis, "Of Logarithms, Their Invention and Use", 1685)

"These primitive propositions […] suffice to deduce all the properties of the numbers that we shall meet in the sequel. There is, however, an infinity of systems which satisfy the five primitive propositions. [...] All systems which satisfy the five primitive propositions are in one-to-one correspondence with the natural numbers. The natural numbers are what one obtains by abstraction from all these systems; in other words, the natural numbers are the system which has all the properties and only those properties listed in the five primitive propositions." (Giuseppe Peano, "I fondamenti dell’aritmetica nel Formulario del 1898" ["The Principles of Arithmetic, presented by a new method"], 1889)

"If one intends to base arithmetic on the theory of natural numbers as finite cardinals, one has to deal mainly with the definition of finite set; for the cardinal is, according to its nature, a property of a set, and any proposition about finite cardinals can always be expressed as a proposition about finite sets. In the following I will try to deduce the most important property of natural numbers, namely the principle of complete induction, from a definition of finite set which is as simple as possible, at the same time showing that the different definitions [of finite set] given so far are equivalent to the one given here." (Ernst Zermelo,  "Ueber die Grundlagen der Arithmetik", Atti del IV Congresso Internazionale dei Matematici, 1908)

"It would not be an exaggeration to say that all of mathematics derives from the concept of infinity. In mathematics, as a rule, we are not interested in individual objects (numbers, geometric figures), but in whole classes of such objects: all natural numbers, all triangles, and so on. But such a collection consists of an infinite number of individual objects." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"[…] mathematicians and philosophers have always been interested in the concept of infinity. This interest arose at the very moment when it became clear that each natural number has a successor, i.e., that the number sequence is infinite. However, even the first attempts to cope with infinity lead to numerous paradoxes." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"There are two facts about the distribution of prime numbers of which I hope to convince you so overwhelmingly that they will be permanently engraved in your hearts. The first is that, despite their simple definition and role as the building blocks of the natural numbers, the prime numbers belong to the most arbitrary and ornery objects studied by mathematicians: they grow like weeds among the natural numbers, seeming to obey no other law than that of chance, and nobody can predict where the next one will sprout. The second fact is even more astonishing, for it states just the opposite: that the prime numbers exhibit stunning regularity, that there are laws governing their behaviour, and that they obey these laws with almost military precision." (Don Zagier, "The First 50 Million Prime Numbers", The Mathematical Intelligencer Vol. 0, 1977)

"For the advancing army of physics, battling for many a decade with heat and sound, fields and particles, gravitation and spacetime geometry, the cavalry of mathematics, galloping out ahead, provided what it thought to be the rationale for the natural number system. Encounter with the quantum has taught us, however, that we acquire our knowledge in bits; that the continuum is forever beyond our reach. Yet for daily work the concept of the continuum has been and will continue to be as indispensable for physics as it is for mathematics." (John A Wheeler, "Hermann Weyl and the Unity of Knowledge", American Scientist Vol. 74, 1986)

"When all the mathematical smoke clears away, Godel's message is that mankind will never know the final secret of the universe by rational thought alone. It's impossible for human beings to ever formulate a complete description of the natural numbers. There will always be arithmetic truths that escape our ability to fence them in using the tools, tricks and subterfuges of rational analysis." (John L Casti, "Reality Rules: Picturing the world in mathematics" Vol. II, 1992)

"[…] i is not a real number-not ordered anywhere relative to the real numbers! In other words, it does not even have the central property of ‘numbers’, indicating a magnitude that can be linearly compared to all other magnitudes. You can see why i has been called imaginary. It has almost none of the properties of the small natural numbers-not subitizability, not groupability, and not even relative magnitude. If i is to be a number, it is a number only by virtue of closure and the laws of arithmetic." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being, 2000)

"The word 'discrete' means separate or distinct. Mathematicians view it as the opposite of 'continuous'. Whereas, in calculus, it is continuous functions of a real variable that are important, such functions are of relatively little interest in discrete mathematics. Instead of the real numbers, it is the natural numbers 1, 2, 3, ... that play a fundamental role, and it is functions with domain the natural numbers that are often studied." (Edgar G Goodaire & Michael M Parmenter, "Discrete Mathematics with Graph Theory" 2nd Ed., 2002)

"The so-called ‘imaginary numbers’ were successfully used long before they were properly defined as elements of a concrete field extension of the real numbers. The axiomatic description of a theory generally appears only in its mature stages, after many of its properties have been informally explored. Perhaps the longest duration between the usage and formalization of a notion is that of the natural numbers." (Barnaby Sheppard, "The Logic of Infinity", 2014)

"But we also have to know that every model has its limitations. The model of natural numbers and their sums is very successful to determine the number of objects in the union of two different groups of well-distinguished objects. But as a mathematical model, the arithmetic of numbers is not generally true but only validated and confirmed for certain well-controlled situations. […] If a model makes valid predictions in many concrete cases, if it already has been applied and tested successfully in many situations, we have some right to trust in that model. By now, we believe in the model 'natural numbers and their arithmetic' and in its predictions without having to check it every time. We do not expect that the result might be wrong; hence the verification step is not needed any longer for validating the model. If the model had a flaw, it would have been eliminated already in the past." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)

"Most mathematicians are not particularly worried by the fact that there are natural numbers so huge that they cannot be conceptualized exactly. Typically, when applying numbers to reality, approximate quantities are sufficient, and extremely large numbers would rarely be needed. In theory, the natural numbers are just a sequence whose structure is axiomatically described by the Peano axioms. As a mathematician, one typically does not care about the practical realizability of particular numbers. That every number has a unique successor is simply true by assumption; it needs no practical verification." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)

"The branch of philosophy of mathematics that would not accept objects or expressions that nobody can construct in any practical sense is called ultrafinitism. According to this view, not even the concept of natural numbers would be accepted without restrictions, and, of course, an ultrafinitist would refuse to talk about infinity. To most mathematicians, this view would be too extreme. Reducing mathematics to finite and not-too-large objects would restrict mathematics and its usefulness in an intolerable way." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)

"When we extend the system of natural numbers and counting to embrace infinite cardinals, the larger system need not have all of the properties of the smaller one. However, familiarity with the smaller system leads us to expect certain properties, and we can become confused when the pieces don’t seem to fit. Insecurity arose when the square of a complex number violated the real number principle that all squares are positive. This was resolved when we realised that the complex numbers cannot be ordered in the same way as their subset of reals." (Ian Stewart & David Tall, "The Foundations of Mathematics" 2nd Ed., 2015)

"God made the natural numbers. all else is the work of man." (Leopold Kronecker)

"Since primes are the basic building blocks of the number universe from which all the other natural numbers are composed, each in its own unique combination, the perceived lack of order among them looked like a perplexing discrepancy in the otherwise so rigorously organized structure of the mathematical world." (H Peter Aleff, "Prime Passages to Paradise")

Previous Post <<||>> Next Post

25 September 2023

On Complexity II

"The supreme Being is everywhere; but He is not equally visible everywhere. Let us seek Him in the simplest things, in the most fundamental laws of Nature, in the universal rules by which movement is conserved, distributed or destroyed; and let us not seek Him in phenomena that are merely complex consequences of these laws." (Pierre L Maupertuis, "Les Loix du Mouvement et du Repos, déduites d'un Principe Métaphysique", 1746)

"The central task of a natural science is to make the wonderful commonplace: to show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos. […] This is the task of natural science: to show that the wonderful is not incomprehensible, to show how it can be comprehended - but not to destroy wonder. For when we have explained the wonderful, unmasked the hidden pattern, a new wonder arises at how complexity was woven out of simplicity. The aesthetics of natural science and mathematics is at one with the aesthetics of music and painting - both inhere in the discovery of a partially concealed pattern." (Herbert A Simon, "The Sciences of the Artificial", 1968)

"For the mathematician, the physical way of thinking is merely the starting point in a process of abstraction or idealization. Instead of being a dot on a piece of paper or a particle of dust suspended in space, a point becomes, in the mathematician's ideal way of thinking, a set of numbers or coordinates. In applied mathematics we must go much further with this process because the physical problems under consideration are more complex. We first view a phenomenon in the physical way, of course, but we must then go through a process of idealization to arrive at a more abstract representation of the phenomenon which will be amenable to mathematical analysis." (Peter Lancaster, "Mathematics: Models of the Real World", 1976)

"Simple rules can have complex consequences. This simple rule has such a wealth of implications that it is worth examining in detail. It is the far from self-evident guiding principle of reductionism and of most modern investigations into cosmic complexity. Reductionism will not be truly successful until physicists and cosmologists demonstrate that the large-scale phenomena of the world arise from fundamental physics alone. This lofty goal is still out of reach. There is uncertainty not only in how physics generates the structures of our world but also in what the truly fundamental rules of physics are. (William Poundstone, "The Recursive Universe", 1985)

"In general, we seem to associate complexity with anything we find difficult to understand." (Robert L Flood, "Complexity: a definition by construction of a conceptual framework", Systems Research and Behavioral Science, 1987)

"Man's attempts to control, service, and/ or design very complex situations have, however, often been fraught with disaster. A major contributory factor has been the unwitting adoption of piecemeal thinking, which sees only parts of a situation and its generative mechanisms. Additionally, it has been suggested that nonrational thinking sees only the extremes (the simple 'solutions' ) of any range of problem solutions. The net result of these factors is that situations exhibit counterintuitive behavior; outcomes of situations are rarely as we expect, but this is not an intrinsic property of situations; rather, it is largely caused by neglect of, or lack of respect being paid to, the nature and complexity of  a situation under investigation." (Robert L Flood & Ewart R Carson, "Dealing with Complexity: An introduction to the theory and application of systems", 1988)

"The state of development of mathematical theory in relation to some attributes of complexity is a clear measure of our ability/inability to deal with that attribute […]" (Robert L Flood & Ewart R Carson, "Dealing with Complexity: An introduction to the theory and application of systems", 1988)

"[…] the complexity of a given system is always determined relative to another system with which the given system interacts. Only in extremely special cases, where one of these reciprocal interactions is so much weaker than the other that it can be ignored, can we justify the traditional attitude regarding complexity as an intrinsic property of the system itself." (John L Casti, "Reality Rules: Picturing the world in mathematics", 1992)

"The idea of one description of a system bifurcating from another also provides the key to begin unlocking one of the most important, and at the same time perplexing, problems of system theory: characterization of the complexity of a system." (John L Casti, "Reality Rules: Picturing the world in mathematics", 1992)

"To model complexity we can't short-circuit any step - each step must be enacted individually. This means in effect that complexity can never be modeled other than by itself." (Des Greene, The Island, 2010)

Catastrophe Theory IV

"The catastrophe model is at the same time much less and much more than a scientific theory; one should consider it as a language, a method, which permits classification and systematization of given empirical data [...] In fact, any phenomenon at all can be explained by a suitable model from catastrophe theory." (René F Thom, 1973)

"Catastrophe theory (in particular its essential concept of structural stability) is really a paradigm rather than a theory. It has attracted so much attention and generated so much argument because its scope and application appear to be virtually unlimited." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"Is catastrophe theory correct? In its mathematics, yes; in the natural philosophy that inspired it and the scientific applications that flow from it, the only possible answer is that it's too soon to say. There is always a chance of error whenever we try to capture any aspect of reality in mathematical symbols, and another chance of error when (after working with the symbols) we use them to generate descriptions or predictions of reality." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"Is the [catastrophe] theory useful? in the rigorous applications, yes; in the illustrations, sometimes; in the 'invocations', both yes and no. Yes, because catastrophe theory provides a common vocabulary for features of many different processes. Someday it may be as natural to speak of a 'cusp situation' or a 'butterfly compromise' as it is today to speak of the 'point of diminishing returns' or of a 'quantum jump'. No, because when the theory is invoked for the suggestiveness of its images, it cannot usually tell us anything we did not know before (although it can make explicit certain features that other models tend to neglect)." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"The most widely used mathematical tools in the social sciences are statistical, and the prevalence of statistical methods has given rise to theories so abstract and so hugely complicated that they seem a discipline in themselves, divorced from the world outside learned journals. Statistical theories usually assume that the behavior of large numbers of people is a smooth, average 'summing-up' of behavior over a long period of time. It is difficult for them to take into account the sudden, critical points of important qualitative change. The statistical approach leads to models that emphasize the quantitative conditions needed for equilibrium-a balance of wages and prices, say, or of imports and exports. These models are ill suited to describe qualitative change and social discontinuity, and it is here that catastrophe theory may be especially helpful." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"The major strength of catastrophe theory is to provide a qualitative topology of the general structure of discontinuities. Its major weakness is that it frequently is not associated with speciific models allowing precise quantitative prediction, although such are possible in principle." (J Barkley Rosser Jr., "From Catastrophe to Chaos: A General Theory of Economic Discontinuities", 1991)

"The key to making discontinuity emerge from smoothness is the observation that the overall behavior of both static and dynamical systems is governed by what's happening near the critical points. These are the points at which the gradient of the function vanishes. Away from the critical points, the Implicit Function Theorem tells us that the behavior is boring and predictable, linear, in fact. So it's only at the critical points that the system has the possibility of breaking out of this mold to enter a new mode of operation. It's at the critical points that we have the opportunity to effect dramatic shifts in the system's behavior by 'nudging' lightly the system dynamics, one type of nudge leading to a limit cycle, another to a stable equilibrium, and yet a third type resulting in the system's moving into the domain of a 'strange attractor'. It's by these nudges in the equations of motion that the germ of the idea of discontinuity from smoothness blossoms forth into the modern theory of singularities, catastrophes and bifurcations, wherein we see how to make discontinuous outputs emerge from smooth inputs." (John L Casti, "Reality Rules: Picturing the world in mathematics", 1992)

24 September 2023

On Laws IV: The Laws of Nature

"Nature always uses the simplest means to accomplish its effects." (Pierre L Maupertuis, "Accord between different laws of Nature that seemed incompatible", Mémoires de l'académie royale des sciences, 1744)

"The supreme Being is everywhere; but He is not equally visible everywhere. Let us seek Him in the simplest things, in the most fundamental laws of Nature, in the universal rules by which movement is conserved, distributed or destroyed; and let us not seek Him in phenomena that are merely complex consequences of these laws." (Pierre L Maupertuis, "Les Loix du Mouvement et du Repos, déduites d'un Principe Métaphysique", 1746)

"Especially when we investigate the general laws of Nature, induction has very great power; & there is scarcely any other method beside it for the discovery of these laws. By its assistance, even the ancient philosophers attributed to all bodies extension, figurability, mobility, & impenetrability; & to these properties, by the use of the same method of reasoning, most of the later philosophers add inertia & universal gravitation. Now, induction should take account of every single case that can possibly happen, before it can have the force of demonstration; such induction as this has no place in establishing the laws of Nature. But use is made of an induction of a less rigorous type ; in order that this kind of induction may be employed, it must be of such a nature that in all those cases particularly, which can be examined in a manner that is bound to lead to a definite conclusion as to whether or no the law in question is followed, in all of them the same result is arrived at; & that these cases are not merely a few. Moreover, in the other cases, if those which at first sight appeared to be contradictory, on further & more accurate investigation, can all of them be made to agree with the law; although, whether they can be made to agree in this way better than in any Other whatever, it is impossible to know directly anyhow. If such conditions obtain, then it must be considered that the induction is adapted to establishing the law." (Roger J Boscovich, "De Lege Continuitatis" ["On the law of continuity"], 1754)

"Systems in physical science […] are no more than appropriate instruments to aid the weakness of our organs: they are, properly speaking, approximate methods which put us on the path to the solution of the problem; these are the hypotheses which, successively modified, corrected, and changed in proportion as they are found false, should lead us infallibly one day, by a process of exclusion, to the knowledge of the true laws of nature." (Antoine L Lavoisier, "Mémoires de l’Académie Royale des Sciences", 1777)

"[…] we are far from having exhausted all the applications of analysis to geometry, and instead of believing that we have approached the end where these sciences must stop because they  have reached the limit of the forces of the human spirit, we ought to avow rather we are only at the first steps of an immense career. These new [practical] applications, independently of the utility which they may have in themselves, are necessary to the progress of analysis in general; they give birth to questions which one would not think to propose; they demand that one create new methods. Technical processes are the children of need; one can say the same for the methods of the most abstract sciences. But we owe the latter to the needs of a more noble kind, the need to discover the new truths or to know better the laws of nature." (Nicolas de Condorcet, 1781)

"The laws of nature are the rules according to which the effects are produced; but there must be a cause which operates according to these rules." (Thomas Reid, "Essays on the Intellectual Powers of Man", 1785)

"The end of natural philosophy is to increase either the knowledge or power of man, and enable him to understand the ways and procedure of nature. By discovering the laws of nature, he acquires knowledge, and obtains power; for when these laws are discovered, he can use them as rules of practice, to equal, subdue, or even excel nature by art." (George Adams, "Lectures on Natural and Experimental Philosophy" Vol. 2, 1794)

"[…] we must not measure the simplicity of the laws of nature by our facility of conception; but when those which appear to us the most simple, accord perfectly with observations of the phenomena, we are justified in supposing them rigorously exact." (Pierre-Simon Laplace, "The System of the World", 1809)

"In all speculations on the origin, or agents that have produced the changes on this globe, it is probable that we ought to keep within the boundaries of the probable effects resulting from the regular operations of the great laws of nature which our experience and observation have brought within the sphere of our knowledge. When we overleap those limits, and suppose a total change in nature's laws, we embark on the sea of uncertainty, where one conjecture is perhaps as probable as another; for none of them can have any support, or derive any authority from the practical facts wherewith our experience has brought us acquainted." (William Maclure, "Observations on the Geology of the United States of America", 1817)

"There are no rules or models; that is, there are no rules except general laws of nature which hover over art and special laws which apply to specific subjects." (Victor M Hugo, "Cromwell", 1827)

"Every theorem in geometry is a law of external nature, and might have been ascertained by generalizing from observation and experiment, which in this case resolve themselves into comparisons and measurements. But it was found practicable, and being practicable was desirable, to deduce these truths by ratiocination from a small number of general laws of nature, the certainty and universality of which was obvious to the most careless observer, and which compose the first principles and ultimate premises of the science." (John S Mill, "A System of Logic, Ratiocinative and Inductive", 1843)

"The Laws of Nature are merely truths or generalized facts, in regard to matter, derived by induction from experience, observation, arid experiment. The laws of mathematical science are generalized truths derived from the consideration of Number and Space." (Charles Davies, "The Logic and Utility of Mathematics", 1850)

"If we knew all the laws of Nature, we should need only one fact, or the description of one actual phenomenon, to infer all the particular results at that point. Now we know only a few laws, and our result is vitiated, not, of course, by any confusion or irregularity in Nature, but by our ignorance of essential elements in the calculation. Our notions of law and harmony are commonly confined to those instances which we detect; but the harmony which results from a far greater number of seemingly conflicting, but really concurring, laws, which we have not detected, is still more wonderful. The particular laws are as our points of view, as to the traveler, a mountain outline varies with every step, and it has an infinite number of profiles, though absolutely but one form. Even when cleft or bored through it is not comprehended in its entireness." (Henry D Thoreau, "Walden; or, Life in the Woods", 1854)

"This science, Geometry, is one of indispensable use and constant reference, for every student of the laws of nature; for the relations of space and number are the alphabet in which those laws are written. But besides the interest and importance of this kind which geometry possesses, it has a great and peculiar value for all who wish to understand the foundations of human knowledge, and the methods by which it is acquired. For the student of geometry acquires, with a degree of insight and clearness which the unmathematical reader can but feebly imagine, a conviction that there are necessary truths, many of them of a very complex and striking character; and that a few of the most simple and self-evident truths which it is possible for the mind of man to apprehend, may, by systematic deduction, lead to the most remote and unexpected results." (William Whewell, "The Philosophy of the Inductive Sciences", 1858)

"A law of nature, however, is not a mere logical conception that we have adopted as a kind of memoria technical to enable us to more readily remember facts. We of the present day have already sufficient insight to know that the laws of nature are not things which we can evolve by any speculative method. On the contrary, we have to discover them in the facts; we have to test them by repeated observation or experiment, in constantly new cases, under ever-varying circumstances; and in proportion only as they hold good under a constantly increasing change of conditions, in a constantly increasing number of cases with greater delicacy in the means of observation, does our confidence in their trustworthiness rise." (Hermann von Helmholtz, "Popular Lectures on Scientific Subjects", 1873)

"Our books of science, as they improve in accuracy, are in danger of losing the freshness and vigor and readiness to appreciate the real laws of Nature, which is a marked merit in the ofttimes false theories of the ancients." (Henry D Thoreau, "A Week on the Concord and Merrimack Rivers", 1873)

"The history of thought should warn us against concluding that because the scientific theory of the world is the best that has yet been formulated, it is necessarily complete and final. We must remember that at bottom the generalizations of science or, in common parlance, the laws of nature are merely hypotheses devised to explain that ever-shifting phantasmagoria of thought which we dignify with the high-sounding names of the world and the universe." (Sir James G Frazer, "The Golden Bough: A Study in Magic and Religion", 1890)

"The strongest use of the symbol is to be found in its magical power of doubling the actual universe, and placing by its side an ideal universe, its exact counterpart, with which it can be compared and contrasted, and, by means of curiously connecting fibres, form with it an organic whole, from which modern analysis has developed her surpassing geometry." (Benjamin Peirce, "On the Uses and Transformations of Linear Algebra", 1875)

"The history of thought should warn us against concluding that because the scientific theory of the world is the best that has yet been formulated, it is necessarily complete and final. We must remember that at bottom the generalizations of science or, in common parlance, the laws of nature are merely hypotheses devised to explain that ever-shifting phantasmagoria of thought which we dignify with the high-sounding names of the world and the universe." (Sir James G Frazer, "The Golden Bough: A Study in Magic and Religion", 1890)

"Education is the instruction of the intellect in the laws of Nature, under which name I include not merely things and their forces, but men and their ways; and the fashioning of the affections and of the will into an earnest and loving desire to move in harmony with those laws." (Thomas H Huxley, "Science and Education", 1891)

"The laws of nature are drawn from experience, but to express them one needs a special language: for, ordinary language is too poor and too vague to express relations so subtle, so rich, so precise. Here then is the first reason why a physicist cannot dispense with mathematics: it provides him with the one language he can speak […]. Who has taught us the true analogies, the profound analogies which the eyes do not see, but which reason can divine? It is the mathematical mind, which scorns content and clings to pure form." (Henri Poincaré, "The Value of Science", 1905)

"Pythagoras says that number is the origin of all things, and certainly the law of number is the key that unlocks the secrets of the universe. But the law of number possesses an immanent order, which is at first sight mystifying, but on a more intimate acquaintance we easily understand it to be intrinsically necessary; and this law of number explains the wondrous consistency of the laws of nature. (Paul Carus, "Reflections on Magic Squares", Monist Vol. 16, 1906)

"An exceedingly small cause which escapes our notice determines a considerable effect that we cannot fail to see, and then we say the effect is due to chance. If we knew exactly the laws of nature and the situation of the universe at the initial moment, we could predict exactly the situation of that same universe at a succeeding moment. But even if it were the case that the natural laws had no longer any secret for us, we could still only know the initial situation 'approximately'. If that enabled us to predict the succeeding situation with 'the same approximation', that is all we require, and we should say that the phenomenon had been predicted, that it is governed by laws. But it is not always so; it may happen that small differences in the initial conditions produce very great ones in the final phenomena. A small error in the former will produce an enormous error in the latter. Prediction becomes impossible, and we have the fortuitous phenomenon. (Jules H Poincaré, "Science and Method", 1908)

"The regularities in the phenomena which physical science endeavors to uncover are called the laws of nature. The name is actually very appropriate. Just as legal laws regulate actions and behavior under certain conditions but do not try to regulate all action and behavior, the laws of physics also determine the behavior of its objects of interest only under certain well-defined conditions but leave much freedom otherwise." (Eugene P Wigner, "Events, Laws of Nature, and Invariance principles", [Nobel lecture] 1914)

"But it is just this characteristic of simplicity in the laws of nature hitherto discovered which it would be fallacious to generalize, for it is obvious that simplicity has been a part cause of their discovery, and can, therefore, give no ground for the supposition that other undiscovered laws are equally simple." (Bertrand Russell, "'On the Scientific Method in Philosophy", 1918)

"The laws of nature cannot be intelligently applied until they are understood, and in order to understand them, many experiments bearing upon the ultimate nature of things must be made, in order that all may be combined in a far-reaching generalization impossible without the detailed knowledge upon which it rests." (Theodore W Richards, "The Problem of Radioactive Lead", 1918)

"'Causation' has been popularly used to express the condition of association, when applied to natural phenomena. There is no philosophical basis for giving it a wider meaning than partial or absolute association. In no case has it been proved that there is an inherent necessity in the laws of nature. Causation is correlation. [...] perfect correlation, when based upon sufficient experience, is causation in the scientific sense." (Henry E. Niles, "Correlation, Causation and Wright's Theory of 'Path Coefficients'", Genetics, 1922)

"Architecture is the first manifestation of man creating his own universe, creating it in the image of nature, submitting to the laws of nature, the laws which govern our own nature, our universe. The laws of gravity, of statics and of dynamics, impose themselves by a reductio ad absurdum: everything must hold together or it will collapse." (Charles-Edouard Jeanneret [Le Corbusier], "Towards a New Architecture", 1923)

"For establishing the laws of nature one resorts (not deliberately but involuntarily) to the simplest formulas that seem to describe the phenomena with reasonable accuracy. […] Even those laws of nature that are the most general and important for the world view have always been proved experimentally only in a confined ambit and with limited accuracy. […] The exact formulation of the laws of nature by simple formulas is based on the desire to master external phenomena with the simplest tools possible." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"It goes without saying that the laws of nature are in themselves independent of the properties of the instruments with which they are measured. Therefore in every observation of natural phenomena we must remember the principle that the reliability of the measuring apparatus must always play an important role." (Max Planck,"Where is Science Going?", 1932)

"Pure mathematics is, in its way, the poetry of logical ideas. One seeks the most general ideas of operation which will bring together in simple, logical and unified form the largest possible circle of formal relationships. In this effort toward logical beauty spiritual formulas are discovered necessary for the deeper penetration into the laws of nature." (Albert Einstein, [Obituary for Emmy Noether], 1935)

"The researcher worker, in his efforts to express the fundamental laws of Nature in mathematical form, should strive mainly for mathematical beauty. He should still take simplicity into consideration in a subordinate way to beauty. […] It often happens that the requirements of simplicity and beauty are the same, but where they clash the latter must take precedence." (Paul A M Dirac, "The Relation Between Mathematics and Physics", Proceedings of the Royal Society , Volume LIX, 1939)

"The fundamental difference between engineering with and without statistics boils down to the difference between the use of a scientific method based upon the concept of laws of nature that do not allow for chance or uncertainty and a scientific method based upon the concepts of laws of probability as an attribute of nature." (Walter A Shewhart, 1940)

"The laws of nature may be operative up to a certain limit, beyond which they turn against themselves to give birth to the absurd." (Albert Camus, "The Myth of Sisyphus", 1942)

"The responsibility for the creation of new scientific knowledge - and for most of its application - rests on that small body of men and women who understand the fundamental laws of nature and are skilled in the techniques of scientific research. We shall have rapid or slow advance on any scientific frontier depending on the number of highly qualified and trained scientists exploring it."(Vannevar Bush, "Science: The Endless Frontier", 1945)

"In classical physics, most of the fundamental laws of nature were concerned either with the stability of certain configurations of bodies, e.g. the solar system, or else with the conservation of certain properties of matter, e.g. mass, energy, angular momentum or spin. The outstanding exception was the famous Second Law of Thermodynamics, discovered by Clausius in 1850. This law, as usually stated, refers to an abstract concept called entropy, which for any enclosed or thermally isolated system tends to increase continually with lapse of time. In practice, the most familiar example of this law occurs when two bodies are in contact: in general, heat tends to flow from the hotter body to the cooler. Thus, while the First Law of Thermodynamics, viz. the conservation of energy, is concerned only with time as mere duration, the Second Law involves the idea of trend." (Gerald J Whitrow, "The Structure of the Universe: An Introduction to Cosmology", 1949)

"We have assumed that the laws of nature must be capable of expression in a form which is invariant for all possible transformations of the space-time co-ordinates." (Gerald J Whitrow, "The Structure of the Universe: An Introduction to Cosmology", 1949)

"The world is not made up of empirical facts with the addition of the laws of nature: what we call the laws of nature are conceptual devices by which we organize our empirical knowledge and predict the future." (Richard B Braithwaite, "Scientific Explanation", 1953)

"The enormous usefulness of mathematics in natural sciences is something bordering on the mysterious, and there is no rational explanation for it. It is not at all natural that ‘laws of nature’ exist, much less that man is able to discover them. The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve." (Eugene P Wigner, "The Unreasonable Effectiveness of Mathematics in the Natural Sciences," 1960)

"We know many laws of nature and we hope and expect to discover more. Nobody can foresee the next such law that will be discovered. Nevertheless, there is a structure in laws of nature which we call the laws of invariance. This structure is so far-reaching in some cases that laws of nature were guessed on the basis of the postulate that they fit into the invariance structure." (Eugene P Wigner, "The Role of Invariance Principles in Natural Philosophy", 1963)

"It is now natural for us to try to derive the laws of nature and to test their validity by means of the laws of invariance, rather than to derive the laws of invariance from what we believe to be the laws of nature." (Eugene P Wigner, "Symmetries and Reflections", 1967)

"The laws of nature 'discovered' by science are merely mathematical or mechanical models that describe how nature behaves, not why, nor what nature 'actually' is. Science strives to find representations that accurately describe nature, not absolute truths. This fact distinguishes science from religion." (George O Abell, "Exploration of the Universe", 1969)

"[...] it seems self-evident that mathematics is not likely to be much help in discovering laws of nature. If a mathematician wants to make a contribution on this (and I admit it is the highest) level, he will have to master so much experimental material and train himself to think in a way so different from the one he has been accustomed to that he will, in effect, cease to be a mathematician." (Mark Kac, "On Applying Mathematics: Reflections and Examples", Quarterly of Applied Mathematics, 1972)

"Laws of nature are human inventions, like ghosts. Laws of logic, or mathematics are also human inventions, like ghosts. The whole blessed thing is a human invention, including the idea that it isn't a human invention." (Robert M Pirsig, "Zen and the Art of Motorcycle Maintenance", 1974)

"It was mathematics, the non-empirical science par excellence, wherein the mind appears to play only with itself, that turned out to be the science of sciences, delivering the key to those laws of nature and the universe that are concealed by appearances." (Hannah Arendt, "The Life of the Mind", 1977)

"The ideas that are basic to [my work] often bear witness to my amazement and wonder at the laws of nature which operate in the world around us. He who wonders discovers that this is in itself a wonder. By keenly confronting the enigmas that surround us, and by considering and analyzing the observations that I had made, I ended up in the domain of mathematics." (Maurits C Escher, "The Graphic Work", 1978)

"Our form of life depends, in delicate and subtle ways, on several apparent ‘coincidences’ in the fundamental laws of nature which make the Universe tick. Without those coincidences, we would not be here to puzzle over the problem of their existence […] What does this mean? One possibility is that the Universe we know is a highly improbable accident, ‘just one of those things’." (John R Gribbin, "Genesis: The Origins of Man and the Universe", 1981)

"Scientific theories must tell us both what is true in nature, and how we are to explain it. I shall argue that these are entirely different functions and should be kept distinct. […] Scientific theories are thought to explain by dint of the descriptions they give of reality. […] The covering-law model supposes that all we need to know are the laws of nature - and a little logic, perhaps a little probability theory - and then we know which factors can explain which others." (Nancy Cartwright, "How the Laws of Physics Lie", 1983)

"Human beings are very conservative in some ways and virtually never change numerical conventions once they grow used to them. They even come to mistake them for laws of nature." (Isaac Asimov, "Foundation and Earth", 1986)

"Where chaos begins, classical science stops. For as long as the world has had physicists inquiring into the laws of nature, it has suffered a special ignorance about disorder in the atmosphere, in the fluctuations of the wildlife populations, in the oscillations of the heart and the brain. The irregular side of nature, the discontinuous and erratic side these have been puzzles to science, or worse, monstrosities." (James Gleick, "Chaos", 1987)

"The principle of maximum diversity operates both at the physical and at the mental level. It says that the laws of nature and the initial conditions are such as to make the universe as interesting as possible.  As a result, life is possible but not too easy. Always when things are dull, something new turns up to challenge us and to stop us from settling into a rut. Examples of things which make life difficult are all around us: comet impacts, ice ages, weapons, plagues, nuclear fission, computers, sex, sin and death.  Not all challenges can be overcome, and so we have tragedy. Maximum diversity often leads to maximum stress. In the end we survive, but only by the skin of our teeth." (Freeman J Dyson, "Infinite in All Directions", 1988)

"In practice, the intelligibility of the world amounts to the fact that we find it to be algorithmically compressible. We can replace sequences of facts and observational data by abbreviated statements which contain the same information content. These abbreviations we often call 'laws of Nature.' If the world were not algorithmically compressible, then there would exist no simple laws of nature. Instead of using the law of gravitation to compute the orbits of the planets at whatever time in history we want to know them, we would have to keep precise records of the positions of the planets at all past times; yet this would still not help us one iota in predicting where they would be at any time in the future. This world is potentially and actually intelligible because at some level it is extensively algorithmically compressible. At root, this is why mathematics can work as a description of the physical world. It is the most expedient language that we have found in which to express those algorithmic compressions." (John D Barrow, "New Theories of Everything", 1991)

"Somehow the breathless world that we witness seems far removed from the timeless laws of Nature which govern the elementary particles and forces of Nature. The reason is clear. We do not observe the laws of Nature: we observe their outcomes. Since these laws find their most efficient representation as mathematical equations, we might say that we see only the solutions of those equations not the equations themselves. This is the secret which reconciles the complexity observed in Nature with the advertised simplicity of her laws." (John D Barrow, "New Theories of Everything", 1991)

"How surprising it is that the laws of nature and the initial conditions of the universe should allow for the existence of beings who could observe it. Life as we know it would be impossible if any one of several physical quantities had slightly different values." (Steven Weinberg, Life in the Quantum Universe", Scientific American, 1995)

"It suggests to me that consciousness and our ability to do mathematics are no mere accident, no trivial detail, no insignificant by-product of evolution that is piggy-backing on some other mundane property. It points to what I like to call the cosmic connection, the existence of a really deep relationship between minds that can do mathematics and the underlying laws of nature that produce them. We have a closed system of consistency here: the laws of physics produce complex systems, and these complex systems lead to consciousness, which then produces mathematics, which can encode [...] the very laws of physics that gave rise to it." (Paul Davies, "Are We Alone?: Philosophical Implications of the Discovery of Extraterrestrial Life", 1995)

"Riemann concluded that electricity, magnetism, and gravity are caused by the crumpling of our three-dimensional universe in the unseen fourth dimension. Thus a 'force' has no independent life of its own; it is only the apparent effect caused by the distortion of geometry. By introducing the fourth spatial dimension, Riemann accidentally stumbled on what would become one of the dominant themes in modern theoretical physics, that the laws of nature appear simple when expressed in higher-dimensional space. He then set about developing a mathematical language in which this idea could be expressed." (Michio Kaku, "Hyperspace", 1995)

"The problems associated with the initial singularity of the universe bring us to what is called the theory of everything. It is an all-encompassing theory that would completely explain me origin of the universe and everything in it. It would bring together general relativity and quantum mechanics, and explain everything there is to know about the elementary particles of the universe, and the four basic forces of nature (gravitational, electromagnetic, weak, and strong nuclear forces). Furthermore, it would explain the basic laws of nature and the fundamental constants of nature such as the speed of light and Planck's constant." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"Knowledge is encoded in models. Models are synthetic sets of rules, pictures, and algorithms providing us with useful representations of the world of our perceptions and of their patterns. As argued by philosophers and shown by scientists, we do not have access to 'reality', only to some of its manifestations, whose regularities are used to determine rules, which when widely applicable become 'laws of nature'. These laws are constantly tested in the scientific march, and they evolve, develop and transmute as the frontier of knowledge recedes further away."  (Burton G Malkiel, "A Random Walk Down Wall Street", 1999)

"Chaos theory reconciles our intuitive sense of free will with the deterministic laws of nature. However, it has an even deeper philosophical ramification. Not only do we have freedom to control our actions, but also the sensitivity to initial conditions implies that even our smallest act can drastically alter the course of history, for better or for worse. Like the butterfly flapping its wings, the results of our behavior are amplified with each day that passes, eventually producing a completely different world than would have existed in our absence!" (Julien C Sprott, "Strange Attractors: Creating Patterns in Chaos", 2000)

"We have come, in our time, to systematize our understanding of the rules of nature. We say that these rules are the laws of physics. The language of the laws of nature is mathematics. We acknowledge that our understanding of the laws is still incomplete, yet we know how to proceed to enlarge our understanding by means of the 'scientific method' - a logical process of observation and reason that distills the empirically true statements we can make about nature." (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)

"The reality is that without mathematics, modern-day cosmologists could not have progressed even one step in attempting to understand the laws of nature. Mathematics provides the solid scaffolding that holds together any theory of the universe. […] Mathematics appears to be almost too effective in describing and explaining not only the cosmos at large, but even some of the most chaotic of human enterprises." (Mario Livio, "Is God a Mathematician?", 2011)

"Symmetries are transformations that keep certain parameters (properties, equations, and so on) invariant, that is, the parameters they refer to are conserved under these transformations. It is to be expected, therefore, that the identification of conserved quantities is inseparable from the identification of fundamental symmetries in the laws of nature. Symmetries single out 'privileged' operations, conservation laws single out 'privileged' quantities or properties that correspond to these operations. Yet the specific connections between a particular symmetry and the invariance it entails are far from obvious. For instance, the isotropy of space (the indistinguishability of its directions) is intuitive enough, but the conservation of angular momentum based on that symmetry, and indeed, the concept of angular momentum, are far less intuitive." (Yemima Ben-Menahem, "Causation in Science", 2018)

"It is impossible to transcend the laws of nature. You can only determine that your understanding of nature has changed." (Nick Powers)

"Modern man lacks a unified conception of the world. He lives in a dual world: in his environment, which is naturally given to him, and, at the same time, in the world which since the beginning of the modern era has been created for him by sciences founded upon the principle that the laws of nature are, in essence, mathematical. The non-unity which has thus come to penetrate our entire life is the true source of the spiritual crisis we are going through today." (Jan Patočka) 

"Nothing is too wonderful to be true, if it be consistent with the laws of nature, and in such things as these, experiment is the best test of such consistency." (Michael Faraday)

"The highest triumph of the human mind, the true knowledge of the most general laws of nature, ought not to remain the private possession of a privileged class of learned men, but ought to become the common property of all mankind."  (Ernst Häckel)

"The laws of nature are but the mathematical thoughts of God." (Euclid)

"The laws of Nature are written in the language of mathematics […]" (Galileo Galilei)

"The secret of nature is symmetry. When searching for new and more fundamental laws of nature, we should search for new symmetries." (David Gross)

On Laws III: The Laws of Chance

"The facts of greatest outcome are those we think simple; maybe they really are so, because they are influenced only by a small number of well-defined circumstances, maybe they take on an appearance of simplicity because the various circumstances upon which they depend obey the laws of chance and so come to mutually compensate." (Henri Poincaré, "The Foundations of Science", 1913)

"It is easy without any very profound logical analysis to perceive the difference between a succession of favorable deviations from the laws of chance, and on the other hand, the continuous and cumulative action of these laws. It is on the latter that the principle of Natural Selection relies." (Sir Ronald A Fisher, "The Genetical Theory of Natural Selection", 1930)

"In a sense, of course, probability theory in the form of the simple laws of chance is the key to the analysis of warfare; […] My own experience of actual operational research work, has however, shown that its is generally possible to avoid using anything more sophisticated. […] In fact the wise operational research worker attempts to concentrate his efforts in finding results which are so obvious as not to need elaborate statistical methods to demonstrate their truth. In this sense advanced probability theory is something one has to know about in order to avoid having to use it." (Patrick M S Blackett, "Operations Research", Physics Today, 1951)

"Indeed, the laws of chance are just as necessary as the causal laws themselves." (David Bohm, "Causality and Chance in Modern Physics", 1957)

"Can there be laws of chance? The answer, it would seem should be negative, since chance is in fact defined as the characteristic of the phenomena which follow no law, phenomena whose causes are too complex to permit prediction." (Félix E Borel, "Probabilities and Life", 1962)

"[In quantum mechanics] we have the paradoxical situation that observable events obey laws of chance, but that the probability for these events itself spreads according to laws which are in all essential features causal laws." (Max Born, Natural Philosophy of Cause and Chance, 1949)

"[...] the conception of chance enters in the very first steps of scientific activity in virtue of the fact that no observation is absolutely correct. I think chance is a more fundamental conception that causality; for whether in a concrete case, a cause-effect relation holds or not can only be judged by applying the laws of chance to the observation." (Max Born, 1949)

On Laws II: The Laws of Probability

"The laws of probability, so true in general, so fallacious in particular." (Edward Gibbon, "Memoirs of My Life", 1774)

"The second law of thermodynamics appears solely as a law of probability, entropy as a measure of the probability, and the increase of entropy is equivalent to a statement that more probable events follow less probable ones." (Max Planck, "A Survey of Physics", 1923)

"The concepts which now prove to be fundamental to our understanding of nature- a space which is finite; a space which is empty, so that one point [of our 'material' world] differs from another solely in the properties of space itself; four-dimensional, seven- and more dimensional spaces; a space which for ever expands; a sequence of events which follows the laws of probability instead of the law of causation - or alternatively, a sequence of events which can only be fully and consistently described by going outside of space and time - all these concepts seem to my mind to be structures of pure thought, incapable of realisation in any sense which would properly be described as material." (James Jeans, "The Mysterious Universe", 1930)

"The fundamental difference between engineering with and without statistics boils down to the difference between the use of a scientific method based upon the concept of laws of nature that do not allow for chance or uncertainty and a scientific method based upon the concepts of laws of probability as an attribute of nature." (Walter A Shewhart, 1940)

"[...] the whole course of events is determined by the laws of probability; to a state in space there corresponds a definite probability, which is given by the de Brogile wave associated with the state." (Max Born, "Atomic Physics", 1957)

"We can never achieve absolute truth but we can live hopefully by a system of calculated probabilities. The law of probability gives to natural and human sciences - to human experience as a whole - the unity of life we seek." (Agnes E Meyer, "Education for a New Morality", 1957)

"People are entirely too disbelieving of coincidence. They are far too ready to dismiss it and to build arcane structures of extremely rickety substance in order to avoid it. I, on the other hand, see coincidence everywhere as an inevitable consequence of the laws of probability, according to which having no unusual coincidence is far more unusual than any coincidence could possibly be." (Isaac Asimov, "The Planet That Wasn't", 1976)

"I take the view that life is a nonspiritual, almost mathematical property that can emerge from network-like arrangements of matter. It is sort of like the laws of probability; if you get enough components together, the system will behave like this, because the law of averages dictates so. Life results when anything is organized according to laws only now being uncovered; it follows rules as strict as those that light obeys." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"So we pour in data from the past to fuel the decision-making mechanisms created by our models, be they linear or nonlinear. But therein lies the logician's trap: past data from real life constitute a sequence of events rather than a set of independent observations, which is what the laws of probability demand. [...] It is in those outliers and imperfections that the wildness lurks." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"The possibility of translating uncertainties into risks is much more restricted in the propensity view. Propensities are properties of an object, such as the physical symmetry of a die. If a die is constructed to be perfectly symmetrical, then the probability of rolling a six is 1 in 6. The reference to a physical design, mechanism, or trait that determines the risk of an event is the essence of the propensity interpretation of probability. Note how propensity differs from the subjective interpretation: It is not sufficient that someone’s subjective probabilities about the outcomes of a die roll are coherent, that is, that they satisfy the laws of probability. What matters is the die’s design. If the design is not known, there are no probabilities." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)

"In the laws of probability theory, likelihood distributions are fixed properties of a hypothesis. In the art of rationality, to explain is to anticipate. To anticipate is to explain." (Eliezer S Yudkowsky, "A Technical Explanation of Technical Explanation", 2005)

On Probability Theory (2000-)

"Arithmetic and number theory study patterns of number and counting. Geometry studies patterns of shape. Calculus allows us to handle patterns of motion. Logic studies patterns of reasoning. Probability theory deals with patterns of chance. Topology studies patterns of closeness and position." (Keith Devlin, "The Math Gene: How Mathematical Thinking Evolved And Why Numbers Are Like Gossip", 2000)

"The most important aspect of probability theory concerns the behavior of sequences of random variables." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"In the laws of probability theory, likelihood distributions are fixed properties of a hypothesis. In the art of rationality, to explain is to anticipate. To anticipate is to explain." (Eliezer S. Yudkowsky, "A Technical Explanation of Technical Explanation", 2005)

"Chance is just as real as causation; both are modes of becoming. The way to model a random process is to enrich the mathematical theory of probability with a model of a random mechanism. In the sciences, probabilities are never made up or 'elicited' by observing the choices people make, or the bets they are willing to place.  The reason is that, in science and technology, interpreted probability exactifies objective chance, not gut feeling or intuition. No randomness, no probability." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"At a purely formal level, one could call probability theory the study of measure spaces with total measure one, but that would be like calling number theory the study of strings of digits which terminate." (Terence Tao, "Topics in Random Matrix Theory", 2012)

"The four questions of data analysis are the questions of description, probability, inference, and homogeneity. [...] Descriptive statistics are built on the assumption that we can use a single value to characterize a single property for a single universe. […] Probability theory is focused on what happens to samples drawn from a known universe. If the data happen to come from different sources, then there are multiple universes with different probability models.  [...] Statistical inference assumes that you have a sample that is known to have come from one universe." (Donald J Wheeler," Myths About Data Analysis", International Lean & Six Sigma Conference, 2012)

"Probability theory provides the best answer only when the rules of the game are certain, when all alternatives, consequences, and probabilities are known or can be calculated. [...] In the real game, probability theory is not enough. Good intuitions are needed, which can be more challenging than calculations. One way to reduce uncertainty is to rely on rules of thumb." (Gerd Gigerenzer, "Risk Savvy: How to make good decisions", 2014)

"When statisticians, trained in math and probability theory, try to assess likely outcomes, they demand a plethora of data points. Even then, they recognize that unless it’s a very simple and controlled action such as flipping a coin, unforeseen variables can exert significant influence." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"Probability theory is not the only tool for rationality. In situations of uncertainty, as opposed to risk, simple heuristics can lead to more accurate judgments, in addition to being faster and more frugal. Under uncertainty, optimal solutions do not exist (except in hindsight) and, by definition, cannot be calculated. Thus, it is illusory to model the mind as a general optimizer, Bayesian or otherwise. Rather, the goal is to achieve satisficing solutions, such as meeting an aspiration level or coming out ahead of a competitor."  (Gerd Gigerenzer et al, "Simply Rational: Decision Making in the Real World", 2015)

"New information is constantly flowing in, and your brain is constantly integrating it into this statistical distribution that creates your next perception (so in this sense 'reality' is just the product of your brain’s ever-evolving database of consequence). As such, your perception is subject to a statistical phenomenon known in probability theory as kurtosis. Kurtosis in essence means that things tend to become increasingly steep in their distribution [...] that is, skewed in one direction. This applies to ways of seeing everything from current events to ourselves as we lean 'skewedly' toward one interpretation, positive or negative. Things that are highly kurtotic, or skewed, are hard to shift away from. This is another way of saying that seeing differently isn’t just conceptually difficult - it’s statistically difficult." (Beau Lotto, "Deviate: The Science of Seeing Differently", 2017)

On Probability Theory (1975-1999)

"The theory of probability is the only mathematical tool available to help map the unknown and the uncontrollable. It is fortunate that this tool, while tricky, is extraordinarily powerful and convenient." (Benoit Mandelbrot, "The Fractal Geometry of Nature", 1977)

"Every branch of mathematics has its combinatorial aspects […] There is combinatorial arithmetic, combinatorial topology, combinatorial logic, combinatorial set theory-even combinatorial linguistics, as we shall see in the section on word play. Combinatorics is particularly important in probability theory where it is essential to enumerate all possible combinations of things before a probability formula can be found." (Martin Gardner, "Aha! Insight", 1978)

"The ‘eyes of the mind’ must be able to see in the phase space of mechanics, in the space of elementary events of probability theory, in the curved four-dimensional space-time of general relativity, in the complex infinite dimensional projective space of quantum theory. To comprehend what is visible to the ‘actual eyes’, we must understand that it is only the projection of an infinite dimensional world on the retina." (Yuri I Manin, "Mathematics and Physics", 1981)

"Scientific theories must tell us both what is true in nature, and how we are to explain it. I shall argue that these are entirely different functions and should be kept distinct. […] Scientific theories are thought to explain by dint of the descriptions they give of reality. […] The covering-law model supposes that all we need to know are the laws of nature - and a little logic, perhaps a little probability theory - and then we know which factors can explain which others." (Nancy Cartwright, "How the Laws of Physics Lie", 1983)

"Increasingly [...] the application of mathematics to the real world involves discrete mathematics... the nature of the discrete is often most clearly revealed through the continuous models of both calculus and probability. Without continuous mathematics, the study of discrete mathematics soon becomes trivial and very limited. [...] The two topics, discrete and continuous mathematics, are both ill served by being rigidly separated." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Independence is the central concept of probability theory and few would believe today that understanding what it meant was ever a problem." (Mark Kac, "Enigmas Of Chance", 1985)

"Probability and statistics are now so obviously necessary tools for understanding many diverse things that we must not ignore them even for the average student." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Phenomena having uncertain individual outcomes but a regular pattern of outcomes in many repetitions are called random. 'Random' is not a synonym for 'haphazard' but a description of a kind of order different from the deterministic one that is popularly associated with science and mathematics. Probability is the branch of mathematics that describes randomness." (David S Moore, "Uncertainty", 1990)

"Every field of knowledge has its subject matter and its methods, along with a style for handling them. The field of Probability has a great deal of the Art component in it-not only is the subject matter rather different from that of other fields, but at present the techniques are not well organized into systematic methods. As a result each problem has to be "looked at in the right way" to make it easy to solve. Thus in probability theory there is a great deal of art in setting up the model, in solving the problem, and in applying the results back to the real world actions that will follow." (Richard W Hamming, "The Art of Probability for Scientists and Engineers", 1991)

"Probability is too important to be left to the experts. […] The experts, by their very expert training and practice, often miss the obvious and distort reality seriously. [...] The desire of the experts to publish and gain credit in the eyes of their peers has distorted the development of probability theory from the needs of the average user. The comparatively late rise of the theory of probability shows how hard it is to grasp, and the many paradoxes show clearly that we, as humans, lack a well-grounded intuition in the matter. Neither the intuition of the man in the street, nor the sophisticated results of the experts provides a safe basis for important actions in the world we live in." (Richard W Hamming, "The Art of Probability for Scientists and Engineers", 1991)

"Probability theory has a right and a left hand. On the right is the rigorous foundational work using the tools of measure theory. The left hand 'thinks probabilistically', reduces problems to gambling situations, coin-tossing, motions of a physical particle." (Leo Breiman, "Probability", 1992)

"Probability theory is an ideal tool for formalizing uncertainty in situations where class frequencies are known or where evidence is based on outcomes of a sufficiently long series of independent random experiments. Possibility theory, on the other hand, is ideal for formalizing incomplete information expressed in terms of fuzzy propositions." (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"Probability theory is a serious instrument for forecasting, but the devil, as they say, is in the details - in the quality of information that forms the basis of probability estimates." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"The theory of probability can define the probabilities at the gaming casino or in a lottery - there is no need to spin the roulette wheel or count the lottery tickets to estimate the nature of the outcome - but in real life relevant information is essential. And the bother is that we never have all the information we would like. Nature has established patterns, but only for the most part. Theory, which abstracts from nature, is kinder: we either have the information we need or else we have no need for information." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

On Probability Theory (1950-1974)

"Historically, the original purpose of the theory of probability was to describe the exceedingly narrow domain of experience connected with games of chance, and the main effort was directed to the calculation of certain probabilities." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

"Infinite product spaces are the natural habitat of probability theory." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

"Probability is a mathematical discipline with aims akin to those, for example, of geometry or analytical mechanics. In each field we must carefully distinguish three aspects of the theory: (a) the formal logical content, (b) the intuitive background, (c) the applications. The character, and the charm, of the whole structure cannot be appreciated without considering all three aspects in their proper relation." (William Feller, "An Introduction to Probability Theory and Its Applications", 1950)

"Sampling is the science and art of controlling and measuring the reliability of useful statistical information through the theory of probability." (William E Deming, "Some Theory of Sampling", 1950)

"The classical theory of probability was devoted mainly to a study of the gamble's gain, which is again a random variable; in fact, every random variable can be interpreted as the gain of a real or imaginary gambler in a suitable game." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

"The painful experience of many gamblers has taught us the lesson that no system of betting is successful in improving the gambler's chances. If the theory of probability is true to life, this experience must correspond to a provable statement." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

"In a sense, of course, probability theory in the form of the simple laws of chance is the key to the analysis of warfare; […] My own experience of actual operational research work, has however, shown that its is generally possible to avoid using anything more sophisticated. […] In fact the wise operational research worker attempts to concentrate his efforts in finding results which are so obvious as not to need elaborate statistical methods to demonstrate their truth. In this sense advanced probability theory is something one has to know about in order to avoid having to use it." (Patrick M S Blackett, "Operations Research", Physics Today, 1951)

"The study of inductive inference belongs to the theory of probability, since observational facts can make a theory only probable but will never make it absolutely certain." (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

"To say that observations of the past are certain, whereas predictions are merely probable, is not the ultimate answer to the question of induction; it is only a sort of intermediate answer, which is incomplete unless a theory of probability is developed that explains what we should mean by ‘probable’ and on what ground we can assert probabilities." (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

"The epistemological value of probability theory is based on the fact that chance phenomena, considered collectively and on a grand scale, create non-random regularity." (Andrey N Kolmogorov, "Limit Distributions for Sums of Independent Random Variables", 1954)

"On the other hand, the 'subjective' school of thought, regards probabilities as expressions of human ignorance; the probability of an event is merely a formal expression of our expectation that the event will or did occur, based on whatever information is available. To the subjectivist, the purpose of probability theory is to help us in forming plausible conclusions in cases where there is not enough information available to lead to certain conclusions; thus detailed verification is not expected. The test of a good subjective probability distribution is does it correctly represent our state of knowledge as to the value of x?" (Edwin T Jaynes, "Information Theory and Statistical Mechanics" I, 1956)

"Probability is a mathematical discipline with aims akin to those, for example, of geometry or analytical mechanics. In each field we must carefully distinguish three aspects of the theory: (a) the formal logical content, (b) the intuitive background, (c) the applications. The character, and the charm, of the whole structure cannot be appreciated without considering all three aspects in their proper relation." (William Feller, "An Introduction to Probability Theory and Its Applications", 1957)

"The theory of probability can never lead to a definite statement concerning a single event." (Richard von Mises, "Probability, Statistics, and Truth" 2nd Ed., 1957)

"To the author the main charm of probability theory lies in the enormous variability of its applications. Few mathematical disciplines have contributed to as wide a spectrum of subjects, a spectrum ranging from number theory to physics, and even fewer have penetrated so decisively the whole of our scientific thinking." (Mark Kac, "Lectures in Applied Mathematics" Vol. 1, 1959)

"The mathematician, the statistician, and the philosopher do different things with a theory of probability. The mathematician develops its formal consequences, the statistician applies the work of the mathematician and the philosopher describes in general terms what this application consists in. The mathematician develops symbolic tools without worrying overmuch what the tools are for; the statistician uses them; the philosopher talks about them. Each does his job better if he knows something about the work of the other two." (Irvin J Good, "Kinds of Probability", Science Vol. 129, 1959)

"Incomplete knowledge must be considered as perfectly normal in probability theory; we might even say that, if we knew all the circumstances of a phenomenon, there would be no place for probability, and we would know the outcome with certainty." (Félix E Borel, Probability and Certainty", 1963)

"The probability concept used in probability theory has exactly the same structure as have the fundamental concepts in any field in which mathematical analysis is applied to describe and represent reality." (Richard von Mises, "Mathematical Theory of Probability and Statistics", 1964)

"After all, without the experiment - either a real one or a mathematical model - there would be no reason for a theory of probability." (Thornton C Fry, "Probability and Its Engineering Uses", 1965)

"This faulty intuition as well as many modern applications of probability theory are under the strong influence of traditional misconceptions concerning the meaning of the law of large numbers and of a popular mystique concerning a so-called law of averages." (William Feller, "An Introduction to Probability Theory and Its Applications", 1968)

"Probability theory, for us, is not so much a part of mathematics as a part of logic, inductive logic, really. It provides a consistent framework for reasoning about statements whose correctness or incorrectness cannot be deduced from the hypothesis. The information available is sufficient only to make the inferences 'plausible' to a greater or lesser extent." (Ralph Baierlein, "Atoms and Information Theory: An Introduction to Statistical Mechanics", 1971)

"Since small differences in probability cannot be appreciated by the human mind, there seems little point in being excessively precise about uncertainty." (George E P Box & G C Tiao, "Bayesian inference in statistical analysis", 1973)

"The field of probability and statistics is then transformed into a Tower of Babel, in which only the most naive amateur claims to understand what he says and hears, and this because, in a language devoid of convention, the fundamental distinctions between what is certain and what is not, and between what is impossible and what is not, are abolished. Certainty and impossibility then become confused with high or low degrees of a subjective probability, which is itself denied precisely by this falsification of the language. On the contrary, the preservation of a clear, terse distinction between certainty and uncertainty, impossibility and possibility, is the unique and essential precondition for making meaningful statements (which could be either right or wrong), whereas the alternative transforms every sentence into a nonsense." (Bruno de Finetti, "Theory of Probability", 1974)

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...