15 September 2023

On Art V: Geometry

"Rules necessary for definitions. Not to leave any terms at all obscure or ambiguous without definition; Not to employ in definitions any but terms perfectly known or already explained. […] A few rules include all that is necessary for the perfection of the definitions, the axioms, and the demonstrations, and consequently of the entire method of the geometrical proofs of the art of persuading." (Blaise Pascal, "Pensées", 1670)

"We study art because we receive pleasure from the great works of the masters, and probably we appreciate them the more because we have dabbled a little in pigments or in clay. We do not expect to be composers, or poets, or sculptors, but we wish to appreciate music and letters and the fine arts, and to derive pleasure from them and be uplifted by them. […] So it is with geometry. We study it because we derive pleasure from contact with a great and ancient body of learning that has occupied the attention of master minds during the thousands of years in which it has been perfected, and we are uplifted by it." (David E Smith, "The Teaching of Geometry", 1911)

"And here is what makes this analysis situs interesting to us; it is that geometric intuition really intervenes there. When, in a theorem of metric geometry, one appeals to this intuition, it is because it is impossible to study the metric properties of a figure as abstractions of its qualitative properties, that is, of those which are the proper business of analysis situs. It has often been said that geometry is the art of reasoning correctly from badly drawn figures. This is not a capricious statement; it is a truth that merits reflection. But what is a badly drawn figure? It is what might be executed by the unskilled draftsman spoken of earlier; he alters the properties more or less grossly; his straight lines have disquieting zigzags; his circles show awkward bumps. But this does not matter; this will by no means bother the geometer; this will not prevent him from reasoning." (Henri Poincaré, "Dernières pensées", 1913)

"Projective Geometry: a boundless domain of countless fields where reals and imaginaries, finites and infinites, enter on equal terms, where the spirit delights in the artistic balance and symmetric interplay of a kind of conceptual and logical counterpoint - an enchanted realm where thought is double and flows throughout in parallel streams." (Cassius J Keyser, "The Human Worth of Rigorous Thinking: Essays and Addresses", 1916)

"Imagine any sort of model and a copy of it done by an awkward artist: the proportions are altered, lines drawn by a trembling hand are subject to excessive deviation and go off in unexpected directions. From the point of view of metric or even projective geometry these figures are not equivalent, but they appear as such from the point of view of geometry of position [that is, topology]." (Henri Poincaré, "Dernières pensées", 1920)

"[…] no branch of mathematics competes with projective geometry in originality of ideas, coordination of intuition in discovery and rigor in proof, purity of thought, logical finish, elegance of proofs and comprehensiveness of concepts. The science born of art proved to be an art." (Morris Kline, "Projective Geometry", Scientific America Vol. 192 (1), 1955)

"Nature does not seem full of circles and triangles to the ungeometrical; rather, mastery of the theory of triangles and circles, and later of conic sections, has taught the theorist, the experimenter, the carpenter, and even the artist to find them everywhere, from the heavenly motions to the pose of a Venus." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"Fractal geometry appears to have created a new category of art, next to art for art’s sake and art for the sake of commerce: art for the sake of science (and of mathematics). [...] The source of fractal art resides in the recognition that very simple mathematical formulas that seem completely barren may in fact be pregnant, so to speak, with an enormous amount of graphic structure. The artist’s taste can only affect the selection of formulas to be rendered, the cropping and the rendering. Thus, fractal art seems to fall outside the usual categories of ‘invention’, ‘discovery’ and ‘creativity’." (Benoît B Mandelbrot, "Fractals and an Art for the Sake of Science", 1989)

"One of the most important artistic properties of fractals is the randomness governing the process of making them. Each fractal is essentially generated by a basic formula and one or more gradients that identify the colors of the fractal. Sometimes, however, fractals are generated by tens of different formulas and gradients." (Mehrdad Garousi, "The Postmodern Beauty of Fractals", Leonardo Vol. 45 (1), 2012)

"The concept of infinity embedded in fractals' identity provides an infinity of possibilities to explore in a single image. The repetition of a formula is the key to becoming more familiar with it. When trying a completely new formula, all fractal artists are engaged in the same activity - a random playing around." (Mehrdad Garousi, "The Postmodern Beauty of Fractals", Leonardo Vol. 45 (1), 2012)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...