20 September 2023

On Construction I: Mathematics

"Mathematicians therefore proceed 'by construction', they 'construct' more complicated combinations. When they analyse these combinations, these aggregates, so to speak, into their primitive elements, they see the relations of the elements and deduce the relations of the aggregates themselves. The process is purely analytical, but it is not a passing from the general to the particular, for the aggregates obviously cannot be regarded as more particular than their elements." (Henri Poincaré, "Science and Hypothesis", 1902)

"Mathematics has been called the science of the infinite. Indeed, the mathematician invents finite constructions by which questions are decided that by their very nature refer to the infinite. This is his glory." (Hermann Weyl, "Levels of Infinity", cca. 1930)

"[…] the process of scientific discovery may be regarded as a form of art. This is best seen in the theoretical aspects of Physical Science. The mathematical theorist builds up on certain assumptions and according to well understood logical rules, step by step, a stately edifice, while his imaginative power brings out clearly the hidden relations between its parts. A well-constructed theory is in some respects undoubtedly an artistic production." (Ernest Rutherford, 1932)

"Mathematics as an expression of the human mind reflects the active will, the contemplative reason, and the desire for aesthetic perfection. Its basic elements are logic and intuition, analysis and construction, generality and individuality. Though different traditions may emphasize different aspects, it is only the interplay of these antithetic forces and the struggle for their synthesis that constitute the life, usefulness, and supreme value of mathematical science." (Richard Courant & Herbert Robbins, "What Is Mathematics?", 1941)

"The important point for us to observe is that all these constructions and the laws connecting them can be arrived at by the principle of looking for the mathematically simplest concepts and the link between them. In the limited number of mathematically existent simple field types, and the simple equations possible between them, lies the theorist’s hope of grasping the real in all its depth." (Albert Einstein, "Ideas and Opinions", 1954)

"The sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work" (John Von Neumann, "Method in the Physical Sciences", 1955)

"General Systems Theory is a name which has come into use to describe a level of theoretical model-building which lies somewhere between the highly generalized constructions of pure mathematics and the specific theories of the specialized disciplines. Mathematics attempts to organize highly general relationships into a coherent system, a system however which does not have any necessary connections with the 'real' world around us. It studies all thinkable relationships abstracted from any concrete situation or body of empirical knowledge." (Kenneth E Boulding, "General Systems Theory - The Skeleton of Science", Management Science Vol. 2 (3), 1956)

"In fact, the construction of mathematical models for various fragments of the real world, which is the most essential business of the applied mathematician, is nothing but an exercise in axiomatics." (Marshall Stone, cca 1960)

"[...] sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work - that is, correctly to describe phenomena from a reasonably wide area. Furthermore, it must satisfy certain aesthetic criteria - that is, in relation to how much it describes, it must be rather simple." (John von Neumann, "Method in the physical sciences", 1961)

"A theory with mathematical beauty is more likely to be correct than an ugly one that fits some experimental data. God is a mathematician of a very high order, and He used very advanced mathematics in constructing the universe." (Paul Dirac, Scientific American, 1963)

"It seems to be one of the fundamental features of nature that fundamental physical laws are described in terms of a mathematical theory of great beauty and power, needing quite a high standard of mathematics for one to understand it. You may wonder: Why is nature constructed along these lines? One can only answer that our present knowledge seems to show that nature is so constructed. We simply have to accept it. One could perhaps describe the situation by saying that God is a mathematician of a very high order, and He used very advanced mathematics in constructing the universe. Our feeble attempts at mathematics enable us to understand a bit of the universe, and as we proceed to develop higher and higher mathematics we can hope to understand the universe better." (Paul Dirac, "The Evolution of the Physicist's Picture of Nature", 1963)

"A proof is a construction that can be looked over, reviewed, verified by a rational agent. We often say that a proof must be perspicuous or capable of being checked by hand. It is an exhibition, a derivation of the conclusion, and it needs nothing outside itself to be convincing. The mathematician surveys the proof in its entirety and thereby comes to know the conclusion." (Thomas Tymoczko, "The Four Color Problems", Journal of Philosophy , Vol. 76, 1979)

"For the great majority of mathematicians, mathematics is […] a whole world of invention and discovery - an art. The construction of a new theorem, the intuition of some new principle, or the creation of a new branch of mathematics is the triumph of the creative imagination of the mathematician, which can be compared to that of a poet, the painter and the sculptor." (George F J Temple, "100 Years of Mathematics: a Personal Viewpoint", 1981)

"The usual approach of science of constructing a mathematical model cannot answer the questions of why there should be a universe for the model to describe. Why does the universe go to all the bother of existing?" (Stephen Hawking, "A Brief History of Time", 1988)

"People might suppose that a mathematical proof is conceived as a logical progression, where each step follows upon the ones that have preceded it. Yet the conception of a new argument is hardly likely actually to proceed in this way. There is a globality and seemingly vague conceptual content that is necessary in the construction of a mathematical argument; and this can bear little relation to the time that it would seem to take in order fully to appreciate a serially presented proof" (Roger Penrose, "The Emperor’s New Mind", 1989)

"Because mathematical proofs are long, they are also difficult to invent. One has to construct, without making any mistakes, long chains of assertions, and see what one is doing, see where one is going. To see means to be able to guess what is true and what is false, what is useful and what is not. To see means to have a feeling for which definitions one should introduce, and what the key assertions are that will allow one to develop a theory in a natural manner." (David Ruelle, "Chance and Chaos", 1991)

"The letter ‘i’ originally was meant to suggest the imaginary nature of this number, but with the greater abstraction of mathematics, it came to be realized that it was no more imaginary than many other mathematical constructs. True, it is not suitable for measuring quantities, but it obeys the same laws of arithmetic as do the real numbers, and, surprisingly enough, it makes the statement of various physical laws very natural." (John A Paulos, "Beyond Numeracy", 1991)

"Pedantry and sectarianism aside, the aim of theoretical physics is to construct mathematical models such as to enable us, from the use of knowledge gathered in a few observations, to predict by logical processes the outcomes in many other circumstances. Any logically sound theory satisfying this condition is a good theory, whether or not it be derived from ‘ultimate’ or ‘fundamental’ truth." (Clifford Truesdell & Walter Noll, "The Non-Linear Field Theories of Mechanics" 2nd Ed., 1992)

"Mathematics is not placid, static and eternal. […] Most mathematicians are happy to make use of those axioms in their proofs, although others do not, exploring instead so-called intuitionist logic or constructivist mathematics. Mathematics is not a single monolithic structure of absolute truth!" (Gregory J Chaitin, "A century of controversy over the foundations of mathematics", 2000)

"'Doing mathematics' is thus working on the construction of some mathematical object and resembles other creative enterprises of the mind in a scientific or artistic domain. But while the mental exercise of creating mathematics is somehow related to that of creating art, it should remain clear that mathematical objects are very different from the artistic objects that occur in literature, music, or the visual arts." (David Ruelle, "The Mathematician's Brain", 2007)

"What we get at the end is a mathematical theory: a human construct that, unavoidably, uses concepts introduced by definitions. And the concepts evolve in time because mathematical theories have a life of their own. Not only are theorems proved and new concepts named, but at the same time old concepts are reworked and redefined." (David Ruelle, "The Mathematician's Brain", 2007)

"Philosophers have sometimes made a distinction between analytic and synthetic truths. Analytic truths are not verified by observation; true analytic statements are tautologies and are true by virtue of the definitions of their terms and their logical structure. Synthetic truths relate to the material world; the truth of synthetic statements depends on their correspondence to how physical reality works. Mathematics, according to this distinction, deals exclusively with analytic truths. Its statements are all tautologies and are (analytically) true by virtue of their adherence to formal rules of construction." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2009)

"What brings us mathematical knowledge? The carriers of mathematical knowledge are proofs, more generally arguments and constructions, as embedded in larger contexts. Mathematicians and teachers of higher mathematics know this, but it should be said. Issues about competence and intuition can be raised as well as factors of knowledge involving the general dissemination of analogical or inductive reasoning or the specific conveyance of methods, approaches or ways of thinking. But in the end, what can be directly conveyed as knowledge are proofs." (Akihiro Kanamori, "Mathematical Knowledge: Motley and Complexity of Proof", Annals of the Japan Association for Philosophy of Science Vol. 21, 2013)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...