24 September 2023

On Probability Theory (2000-)

"Arithmetic and number theory study patterns of number and counting. Geometry studies patterns of shape. Calculus allows us to handle patterns of motion. Logic studies patterns of reasoning. Probability theory deals with patterns of chance. Topology studies patterns of closeness and position." (Keith Devlin, "The Math Gene: How Mathematical Thinking Evolved And Why Numbers Are Like Gossip", 2000)

"The most important aspect of probability theory concerns the behavior of sequences of random variables." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"In the laws of probability theory, likelihood distributions are fixed properties of a hypothesis. In the art of rationality, to explain is to anticipate. To anticipate is to explain." (Eliezer S. Yudkowsky, "A Technical Explanation of Technical Explanation", 2005)

"Chance is just as real as causation; both are modes of becoming. The way to model a random process is to enrich the mathematical theory of probability with a model of a random mechanism. In the sciences, probabilities are never made up or 'elicited' by observing the choices people make, or the bets they are willing to place.  The reason is that, in science and technology, interpreted probability exactifies objective chance, not gut feeling or intuition. No randomness, no probability." (Mario Bunge, "Chasing Reality: Strife over Realism", 2006)

"At a purely formal level, one could call probability theory the study of measure spaces with total measure one, but that would be like calling number theory the study of strings of digits which terminate." (Terence Tao, "Topics in Random Matrix Theory", 2012)

"The four questions of data analysis are the questions of description, probability, inference, and homogeneity. [...] Descriptive statistics are built on the assumption that we can use a single value to characterize a single property for a single universe. […] Probability theory is focused on what happens to samples drawn from a known universe. If the data happen to come from different sources, then there are multiple universes with different probability models.  [...] Statistical inference assumes that you have a sample that is known to have come from one universe." (Donald J Wheeler," Myths About Data Analysis", International Lean & Six Sigma Conference, 2012)

"Probability theory provides the best answer only when the rules of the game are certain, when all alternatives, consequences, and probabilities are known or can be calculated. [...] In the real game, probability theory is not enough. Good intuitions are needed, which can be more challenging than calculations. One way to reduce uncertainty is to rely on rules of thumb." (Gerd Gigerenzer, "Risk Savvy: How to make good decisions", 2014)

"When statisticians, trained in math and probability theory, try to assess likely outcomes, they demand a plethora of data points. Even then, they recognize that unless it’s a very simple and controlled action such as flipping a coin, unforeseen variables can exert significant influence." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"Probability theory is not the only tool for rationality. In situations of uncertainty, as opposed to risk, simple heuristics can lead to more accurate judgments, in addition to being faster and more frugal. Under uncertainty, optimal solutions do not exist (except in hindsight) and, by definition, cannot be calculated. Thus, it is illusory to model the mind as a general optimizer, Bayesian or otherwise. Rather, the goal is to achieve satisficing solutions, such as meeting an aspiration level or coming out ahead of a competitor."  (Gerd Gigerenzer et al, "Simply Rational: Decision Making in the Real World", 2015)

"New information is constantly flowing in, and your brain is constantly integrating it into this statistical distribution that creates your next perception (so in this sense 'reality' is just the product of your brain’s ever-evolving database of consequence). As such, your perception is subject to a statistical phenomenon known in probability theory as kurtosis. Kurtosis in essence means that things tend to become increasingly steep in their distribution [...] that is, skewed in one direction. This applies to ways of seeing everything from current events to ourselves as we lean 'skewedly' toward one interpretation, positive or negative. Things that are highly kurtotic, or skewed, are hard to shift away from. This is another way of saying that seeing differently isn’t just conceptually difficult - it’s statistically difficult." (Beau Lotto, "Deviate: The Science of Seeing Differently", 2017)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...