24 September 2023

On Laws II: The Laws of Probability

"The laws of probability, so true in general, so fallacious in particular." (Edward Gibbon, "Memoirs of My Life", 1774)

"The second law of thermodynamics appears solely as a law of probability, entropy as a measure of the probability, and the increase of entropy is equivalent to a statement that more probable events follow less probable ones." (Max Planck, "A Survey of Physics", 1923)

"The concepts which now prove to be fundamental to our understanding of nature- a space which is finite; a space which is empty, so that one point [of our 'material' world] differs from another solely in the properties of space itself; four-dimensional, seven- and more dimensional spaces; a space which for ever expands; a sequence of events which follows the laws of probability instead of the law of causation - or alternatively, a sequence of events which can only be fully and consistently described by going outside of space and time - all these concepts seem to my mind to be structures of pure thought, incapable of realisation in any sense which would properly be described as material." (James Jeans, "The Mysterious Universe", 1930)

"The fundamental difference between engineering with and without statistics boils down to the difference between the use of a scientific method based upon the concept of laws of nature that do not allow for chance or uncertainty and a scientific method based upon the concepts of laws of probability as an attribute of nature." (Walter A Shewhart, 1940)

"[...] the whole course of events is determined by the laws of probability; to a state in space there corresponds a definite probability, which is given by the de Brogile wave associated with the state." (Max Born, "Atomic Physics", 1957)

"We can never achieve absolute truth but we can live hopefully by a system of calculated probabilities. The law of probability gives to natural and human sciences - to human experience as a whole - the unity of life we seek." (Agnes E Meyer, "Education for a New Morality", 1957)

"People are entirely too disbelieving of coincidence. They are far too ready to dismiss it and to build arcane structures of extremely rickety substance in order to avoid it. I, on the other hand, see coincidence everywhere as an inevitable consequence of the laws of probability, according to which having no unusual coincidence is far more unusual than any coincidence could possibly be." (Isaac Asimov, "The Planet That Wasn't", 1976)

"I take the view that life is a nonspiritual, almost mathematical property that can emerge from network-like arrangements of matter. It is sort of like the laws of probability; if you get enough components together, the system will behave like this, because the law of averages dictates so. Life results when anything is organized according to laws only now being uncovered; it follows rules as strict as those that light obeys." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"So we pour in data from the past to fuel the decision-making mechanisms created by our models, be they linear or nonlinear. But therein lies the logician's trap: past data from real life constitute a sequence of events rather than a set of independent observations, which is what the laws of probability demand. [...] It is in those outliers and imperfections that the wildness lurks." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"The possibility of translating uncertainties into risks is much more restricted in the propensity view. Propensities are properties of an object, such as the physical symmetry of a die. If a die is constructed to be perfectly symmetrical, then the probability of rolling a six is 1 in 6. The reference to a physical design, mechanism, or trait that determines the risk of an event is the essence of the propensity interpretation of probability. Note how propensity differs from the subjective interpretation: It is not sufficient that someone’s subjective probabilities about the outcomes of a die roll are coherent, that is, that they satisfy the laws of probability. What matters is the die’s design. If the design is not known, there are no probabilities." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)

"In the laws of probability theory, likelihood distributions are fixed properties of a hypothesis. In the art of rationality, to explain is to anticipate. To anticipate is to explain." (Eliezer S Yudkowsky, "A Technical Explanation of Technical Explanation", 2005)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

A Picture's Worth

"The drawing shows me at a glance what would be spread over ten pages in a book." (Ivan Turgenev, 1862) [2] "Sometimes, half ...