"Illiteracy and innumeracy are social ills created in part by increased demand for words and numbers. As printing brought words to the masses and made literacy a prerequisite for productive life, so now computing has made numeracy an essential feature of today's society. But it is innumeracy, not numeracy, that dominates the headlines: ignorance of basic quantitative tools is endemic […] and is approaching epidemic levels […]." (Lynn A Steen, "Numeracy", Daedalus Vol. 119 No. 2, 1990)
"Mathematics is not just a collection of results, often called theorems; it is a style of thinking. Computing is also basically a style of thinking. Similarly, probability is a style of thinking." (Richard W Hamming, "The Art of Probability for Scientists and Engineers", 1991)
"In spite of the insurmountable computational limits, we continue to pursue the many problems that possess the characteristics of organized complexity. These problems are too important for our well being to give up on them. The main challenge in pursuing these problems narrows down fundamentally to one question: how to deal with systems and associated problems whose complexities are beyond our information processing limits? That is, how can we deal with these problems if no computational power alone is sufficient?" (George Klir, "Fuzzy sets and fuzzy logic", 1995)
"Small changes in the initial conditions in a chaotic system produce dramatically different evolutionary histories. It is because of this sensitivity to initial conditions that chaotic systems are inherently unpredictable. To predict a future state of a system, one has to be able to rely on numerical calculations and initial measurements of the state variables. Yet slight errors in measurement combined with extremely small computational errors (from roundoff or truncation) make prediction impossible from a practical perspective. Moreover, small initial errors in prediction grow exponentially in chaotic systems as the trajectories evolve. Thus, theoretically, prediction may be possible with some chaotic processes if one is interested only in the movement between two relatively close points on a trajectory. When longer time intervals are involved, the situation becomes hopeless."(Courtney Brown, "Chaos and Catastrophe Theories", 1995)
"Beauty is more important in computing than anywhere else in technology because software is so complicated. Beauty is the ultimate defense against complexity." (David Gelernter, "Machine Beauty: Elegance And The Heart Of Technolog", 1998)
"As systems became more varied and more complex, we find that no single methodology suffices to deal with them. This is particularly true of what may be called information intelligent systems - systems which form the core of modern technology. To conceive, design, analyze and use such systems we frequently have to employ the totality of tools that are available. Among such tools are the techniques centered on fuzzy logic, neurocomputing, evolutionary computing, probabilistic computing and related methodologies. It is this conclusion that formed the genesis of the concept of soft computing." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic: A personal perspective", 1999)
"In science, it is a long-standing tradition to deal with perceptions by converting them into measurements. But what is becoming increasingly evident is that, to a much greater extent than is generally recognized, conversion of perceptions into measurements is infeasible, unrealistic or counter-productive. With the vast computational power at our command, what is becoming feasible is a counter-traditional move from measurements to perceptions. […] To be able to compute with perceptions it is necessary to have a means of representing their meaning in a way that lends itself to computation." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic: A personal perspective", 1999)
No comments:
Post a Comment