20 September 2021

On Computers (1990-1999)

 "Looking at ourselves from the computer viewpoint, we cannot avoid seeing that natural language is our most important 'programming language'. This means that a vast portion of our knowledge and activity is, for us, best communicated and understood in our natural language. [...] One could say that natural language was our first great original artifact and, since, as we increasingly realize, languages are machines, so natural language, with our brains to run it, was our primal invention of the universal computer. One could say this except for the sneaking suspicion that language isn’t something we invented but something we became, not something we constructed but something in which we created, and recreated, ourselves. (Justin Leiber, "Invitation to cognitive science", 1991)

"The cybernetics phase of cognitive science produced an amazing array of concrete results, in addition to its long-term (often underground) influence: the use of mathematical logic to understand the operation of the nervous system; the invention of information processing machines (as digital computers), thus laying the basis for artificial intelligence; the establishment of the metadiscipline of system theory, which has had an imprint in many branches of science, such as engineering (systems analysis, control theory), biology (regulatory physiology, ecology), social sciences (family therapy, structural anthropology, management, urban studies), and economics (game theory); information theory as a statistical theory of signal and communication channels; the first examples of self-organizing systems. This list is impressive: we tend to consider many of these notions and tools an integrative part of our life […]" (Francisco Varela, "The Embodied Mind", 1991)

"A computer terminal is not some clunky old television with a typewriter in front of it. It is an interface where the mind and body can connect with the universe and move bits of it about." (Douglas N Adams, "Mostly Harmless", 1992)

"Finite Nature is a hypothesis that ultimately every quantity of physics, including space and time, will turn out to be discrete and finite; that the amount of information in any small volume of space-time will be finite and equal to one of a small number of possibilities. [...] We take the position that Finite Nature implies that the basic substrate of physics operates in a manner similar to the workings of certain specialized computers called cellular automata." (Edward Fredkin, "A New Cosmogony", PhysComp ’92: Proceedings of the Workshop on Physics and Computation, 1993)

"The insight at the root of artificial intelligence was that these 'bits' (manipulated by computers) could just as well stand as symbols for concepts that the machine would combine by the strict rules of logic or the looser associations of psychology." (Daniel Crevier, "AI: The tumultuous history of the search for artificial intelligence", 1993)

"At first glance the theory of numbers is deprived of any geometricity. But this is actually not the case. At the contemporary stage of development of computers it has become possible to explain to a wide range of readers that visual geometry helps not only to illustrate some abstract situations from the number theory, but sometimes also to solve new problems." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood - which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Theodore Roszak, "The Cult of Information", 1994)

"And in computer life, where the term 'species' does not yet have meaning, we see no cascading emergence of entirely new kinds of variety beyond an initial burst. In the wild, in breeding, and in artificial life, we see the emergence of variation. But by the absence of greater change, we also clearly see that the limits of variation appear to be narrowly bounded, and often bounded within species." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Self-organization refers to the spontaneous formation of patterns and pattern change in open, nonequilibrium systems. […] Self-organization provides a paradigm for behavior and cognition, as well as the structure and function of the nervous system. In contrast to a computer, which requires particular programs to produce particular results, the tendency for self-organization is intrinsic to natural systems under certain conditions." (J A Scott Kelso, "Dynamic Patterns : The Self-organization of Brain and Behavior", 1995)

"Representation is the process of transforming existing problem knowledge to some of the known knowledge-engineering schemes in order to process it by applying knowledge-engineering methods. The result of the representation process is the problem knowledge base in a computer format." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Shearing away detail is the very essence of model building. Whatever else we require, a model must be simpler than the thing modeled. In certain kinds of fiction, a model that is identical with the thing modeled provides an interesting device, but it never happens in reality. Even with virtual reality, which may come close to this literary identity one day, the underlying model obeys laws which have a compact description in the computer - a description that generates the details of the artificial world." (John H Holland, "Emergence" , Philosophica 59, 1997)

"Modelling techniques on powerful computers allow us to simulate the behaviour of complex systems without having to understand them.  We can do with technology what we cannot do with science.  […] The rise of powerful technology is not an unconditional blessing.  We have  to deal with what we do not understand, and that demands new  ways of thinking." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"For most problems found in mathematics textbooks, mathematical reasoning is quite useful. But how often do people find textbook problems in real life? At work or in daily life, factors other than strict reasoning are often more important. Sometimes intuition and instinct provide better guides; sometimes computer simulations are more convenient or more reliable; sometimes rules of thumb or back-of-the-envelope estimates are all that is needed." (Lynn A Steen,"Twenty Questions about Mathematical Reasoning", 1999)

"Once a computer achieves human intelligence it will necessarily roar past it." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999)

"The classic example of chaos at work is in the weather. If you could measure the positions and motions of all the atoms in the air at once, you could predict the weather perfectly. But computer simulations show that tiny differences in starting conditions build up over about a week to give wildly different forecasts. So weather predicting will never be any good for forecasts more than a few days ahead, no matter how big (in terms of memory) and fast computers get to be in the future. The only computer that can simulate the weather is the weather; and the only computer that can simulate the Universe is the Universe." (John Gribbin, "The Little Book of Science", 1999)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Continuity: Definitions

"The Law of Continuity, as we here deal with it, consists in the idea that [...] any quantity, in passing from one magnitude to another...