03 September 2021

On Physicists (1990-1999)

"[…] physicists have come to appreciate a fourth kind of temporal behavior: deterministic chaos, which is aperiodic, just like random noise, but distinct from the latter because it is the result of deterministic equations. In dynamic systems such chaos is often characterized by small fractal dimensions because a chaotic process in phase space typically fills only a small part of the entire, energetically available space." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"There are at least three (overlapping) ways that mathematics may contribute to science. The first, and perhaps the most important, is this: Since the mathematical universe of the mathematician is much larger than that of the physicist, mathematicians are able to go beyond existing frameworks and see geometrical or analytic structures unavailable to tie physicist. Instead of using the particular equations used previously to describe reality, a mathematician has at his disposal an unused world of differential equations, to be studied with no a priori constraints. New scientific phenomena, new discoveries, may thus generated. Understanding of the present knowledge may be deepened via the corresponding deductions. [...] The second way [...] has to do with the consolidation of new physical ideas. One may express this as the proof of consistency of physical theories. [...] mathematical foundations of quantum mechanics with Hilbert space, its operator theory, and corresponding differential equations. [...] The third way [...] is by describing reality in mathematical terms, or by simply constructing a mathematical model." (Steven Smale, "What is chaos?", 1990)

"A purely psychological approach to science would miss the importance of the comprehensibility of mathematics, and of 'the unreasonable effectiveness of mathematics in the natural sciences'. In fact, some scientists in the 'soft' sciences seem to miss this as well. But mathematicians and physicists know that they deal with a reality that has laws of its own, a reality above our little psychological problems, a reality that is strange, fascinating, and in some sense beautiful." (David Ruelle, "Chance and Chaos", 1991)

"That is, the physicist likes to learn from particular illustrations of a general abstract concept. The mathematician, on the other hand, often eschews the particular in pursuit of the most abstract and general formulation possible. Although the mathematician may think from, or through, particular concrete examples in coming to appreciate the likely truth of very general statements, he will hide all those intuitive steps when he comes to present the conclusions of his thinking to outsiders. It presents the results of research as a hierarchy of definitions, theorems and proofs after the manner of Euclid; this minimizes unnecessary words but very effectively disguises the natural train of thought that led to the original results." (John D Barrow, "New Theories of Everything", 1991)

"What is the origin of the urge, the fascination that drives physicists, mathematicians, and presumably other scientists as well? Psychoanalysis suggests that it is sexual curiosity. You start by asking where little babies come from, one thing leads to another, and you find yourself preparing nitroglycerine or solving differential equations. This explanation is somewhat irritating, and therefore probably basically correct." (David Ruelle, "Chance and Chaos", 1991)

"A physicist who says that a theory is beautiful does not mean quite the same thing that would be meant in saying that a particular painting or a piece of music or poetry is beautiful. It is not merely a personal expression of aesthetic pleasure; it is much closer to what a horse-trainer means when he looks at a racehorse and says that it is a beautiful horse. The horse-trainer is of course expressing a personal opinion, but it is an opinion about an objective fact: that, on the basis of judgements that the trainer could not easily put into words, this is the kind of horse that wins races [...] The physicist’s sense of beauty is also supposed to serve a purpose –it is supposed to help the physicist select ideas that help us to explain nature." (Steven Weinberg, "Dreams of a Final Theory", 1992)

"At the same time, Kaufmann discovered that in developing his genetic networks, he had reinvented some of the most avant-garde work in physics and applied mathematics - albeit in a totally new context. The dynamics of his genetic regulatory networks turned out to be a special case of what the physicists were calling 'nonlinear dynamics'. From the nonlinear point of view, in fact, it was easy to see why his sparsely connected networks could organize themselves into stable cycles so easily: mathematically, their behavior was equivalent to the way all the rain falling on the hillsides around a valley will flow into a lake at the bottom of the valley. In the space of all possible network behaviors, the stable cycles were like basins-or as the physicists put it, 'attractors'." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"In the everyday world of human affairs, no one is surprised to learn that a tiny event over here can have an enormous effect over there. For want of a nail, the shoe was lost, et cetera. But when the physicists started paying serious attention to nonlinear systems in their own domain, they began to realize just how profound a principle this really was. […] Tiny perturbations won't always remain tiny. Under the right circumstances, the slightest uncertainty can grow until the system's future becomes utterly unpredictable - or, in a word, chaotic." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"Physicists' models are like maps: never final, never complete until they grow as large and complex as the reality they represent." (James Gleick, "Genius: The Life and Science of Richard Feynman, Epilogue", 1992)

"Maxwell's equations […] originally consisted of eight equations. These equations are not 'beautiful'. They do not possess much symmetry. In their original form, they are ugly. […] However, when rewritten using time as the fourth dimension, this rather awkward set of eight equations collapses into a single tensor equation. This is what a physicist calls 'beauty', because both criteria are now satisfied.  (Michio Kaku, "Hyperspace", 1995)

"Yet, Einstein's theories are also not the last word: quantum theory and relativity are inconsistent, and Einstein himself, proclaiming that 'God does not play dice!', rejected the basic reliance of quantum theory on chance events, and looked forward to a theory which would be deterministic. Recent experiments suggest that this view of Einstein's conflicts with his other deeply held beliefs about the nature of the physical universe. Certain it is that somewhere, beyond physicists' current horizons, are even more powerful theories of how the world is." (David Wells, "You Are a Mathematician: A wise and witty introduction to the joy of numbers", 1995)

"Empirical evidence can never establish mathematical existence--nor can the mathematician's demand for existence be dismissed by the physicist as useless rigor. Only a mathematical existence proof can ensure that the mathematical description of a physical phenomenon is meaningful." (Richard Courant, "The Parsimonious Universe, Stefan Hildebrandt & Anthony Tromba", 1996)

"Discovery of supersymmetry would be one of the real milestones in physics, made even more exciting by its close links to still more ambitious theoretical ideas. Indeed, supersymmetry is one of the basic requirements of 'string theory', which is the framework in which theoretical physicists have had some success in unifying gravity with the rest of the elementary particle forces. Discovery of supersymmetry would would certainly give string theory an enormous boost." (Edward Witten, [preface to" (Gordon Kane, "Supersymmetry: Unveiling the Ultimate Laws of Nature", 2000) 1999)

"Physicists are more like avant-garde composers, willing to bend traditional rules and brush the edge of acceptability in the search for solutions. Mathematicians are more like classical composers, typically working within a much tighter framework, reluctant to go to the next step until all previous ones have been established with due rigor. Each approach has its advantages as well as drawbacks; each provides a unique outlet for creative discovery. Like modern and classical music, it’s not that one approach is right and the other wrong – the methods one chooses to use are largely a matter of taste and training." (Brian Greene, "The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory", 1999)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Literature: On Memory (From Fiction to Science-Fiction)

"Some dreams I have had in this cottage seem to give strength to the opinion that there is a psychic memory attached to certain neighbo...