"That is, the physicist likes to learn from particular illustrations of a general abstract concept. The mathematician, on the other hand, often eschews the particular in pursuit of the most abstract and general formulation possible. Although the mathematician may think from, or through, particular concrete examples in coming to appreciate the likely truth of very general statements, he will hide all those intuitive steps when he comes to present the conclusions of his thinking to outsiders. It presents the results of research as a hierarchy of definitions, theorems and proofs after the manner of Euclid; this minimizes unnecessary words but very effectively disguises the natural train of thought that led to the original results." (John D Barrow, "New Theories of Everything", 1991)
"What is the origin of the urge, the fascination that drives physicists, mathematicians, and presumably other scientists as well? Psychoanalysis suggests that it is sexual curiosity. You start by asking where little babies come from, one thing leads to another, and you find yourself preparing nitroglycerine or solving differential equations. This explanation is somewhat irritating, and therefore probably basically correct." (David Ruelle, "Chance and Chaos", 1991)
"In the everyday world of human affairs, no one is surprised to learn that a tiny event over here can have an enormous effect over there. For want of a nail, the shoe was lost, et cetera. But when the physicists started paying serious attention to nonlinear systems in their own domain, they began to realize just how profound a principle this really was. […] Tiny perturbations won't always remain tiny. Under the right circumstances, the slightest uncertainty can grow until the system's future becomes utterly unpredictable - or, in a word, chaotic." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)
"Physicists' models are like maps: never final, never complete until they grow as large and complex as the reality they represent." (James Gleick, "Genius: The Life and Science of Richard Feynman, Epilogue", 1992)
"Empirical evidence can never establish mathematical existence--nor can the mathematician's demand for existence be dismissed by the physicist as useless rigor. Only a mathematical existence proof can ensure that the mathematical description of a physical phenomenon is meaningful." (Richard Courant, "The Parsimonious Universe, Stefan Hildebrandt & Anthony Tromba", 1996)
"Physicists are more like avant-garde composers, willing to bend traditional rules and brush the edge of acceptability in the search for solutions. Mathematicians are more like classical composers, typically working within a much tighter framework, reluctant to go to the next step until all previous ones have been established with due rigor. Each approach has its advantages as well as drawbacks; each provides a unique outlet for creative discovery. Like modern and classical music, it’s not that one approach is right and the other wrong – the methods one chooses to use are largely a matter of taste and training." (Brian Greene, "The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory", 1999)
"A more extreme form of exponential growth was probably responsible for the start of the universe. Astronomer and physicists now generally accept the Big Bang theory, according to which the universe started at an unimaginably small size and then doubled in a split second 100 times, enough to make it the size of a small grapefruit. This period of 'inflation' or exponential growth then ended, and linear growth took over, with an expanding fireball creating the universe that we know today." (Richar Koch, "The Power Laws", 2000)
"Theoretical physicists are like pure mathematicians, in that they are often interested in the hypothetical behaviour of entirely imaginary objects, such as parallel universes, or particles traveling faster than light, whose actual existence is not being seriously proposed at all." (John Ziman," Real Science: What it Is, and what it Means", 2000)
"Physics builds from observations. No physical theory can succeed if it is not confirmed by observations, and a theory strongly supported by observations cannot be denied. (William N Cropper, Great Physicists, 2001)
No comments:
Post a Comment