03 September 2021

On Physicists (1925-1939)

"In our recognition that order is universal, a fact confirmed by myriads of observations of patient, indefatigable, and devoted investigators, the old saying that 'an irreverent astronomer is mad' can apply with equal force to the physicist. Man learns something of his own minute and colossal stature, and he comes to feel that his own intelligence, which enables him to make such sublime discoveries, is the supreme achievement of evolution." (Harvey B Lemon, "Atomic Structure", 1927)

"In scientific thought we adopt the simplest theory which will explain all the facts under consideration and enable us to predict new facts of the same kind. The catch in this criterion lies in the world 'simplest'. It is really an aesthetic canon such as we find implicit in our criticisms of poetry or painting. The layman finds such a law as dx/dt = K(d2x/dy2) much less simple than 'it oozes', of which it is the mathematical statement. The physicist reverses this judgment, and his statement is certainly the more fruitful of the two, so far as prediction is concerned. It is, however, a statement about something very unfamiliar to the plainman, namely, the rate of change of a rate of change." (John B S Haldane, "Possible Worlds", 1927)

"Probably, what characterizes all scientists, whatever they may be, archivists, mathematicians, chemists, astronomists, physicists, is that they do not seek to reach a practical conclusion by their work." (Charles Richet, "The Natural History of a Savant", 1927)

"[...] the fact has always been for the physicist the one ultimate thing from which there is no appeal, and in the face of which the only possible attitude is a humility almost religious." (Percy W Bridgman, "The Logic of Modern Physics", 1927)

"Whereas the conception of space and time as a four-dimensional manifold has been very fruitful for mathematical physicists, its effect in the field of epistemology has been only to confuse the issue. Calling time the fourth dimension gives it an air of mystery. One might think that time can now be conceived as a kind of space and try in vain to add visually a fourth dimension to the three dimensions of space. It is essential to guard against such a misunderstanding of mathematical concepts. If we add time to space as a fourth dimension it does not lose any of its peculiar character as time. [...] Musical tones can be ordered according to volume and pitch and are thus brought into a two dimensional manifold. Similarly colors can be determined by the three basic colors red, green and blue… Such an ordering does not change either tones or colors; it is merely a mathematical expression of something that we have known and visualized for a long time. Our schematization of time as a fourth dimension therefore does not imply any changes in the conception of time. [...] the space of visualization is only one of many possible forms that add content to the conceptual frame. We would therefore not call the representation of the tone manifold by a plane the visual representation of the two dimensional tone manifold." (Hans Reichenbach, "The Philosophy of Space and Time", 1928)

"If to-day you ask a physicist what he has finally made out the æther or the electron to be, the answer will not be a description in terms of billiard balls or fly-wheels or anything concrete; he will point instead to a number of symbols and a set of mathematical equations which they satisfy. What do the symbols stand for? The mysterious reply is given that physics is indifferent to that; it has no means of probing beneath the symbolism. To understand the phenomena of the physical world it is necessary to know the equations which the symbols obey but not the nature of that which is being symbolised [...]" (Arthur S Eddington, "Science and the Unseen World", 1929)

"Our environment may and should mean something towards us which is not to be measured with the tools of the physicist or described by the metrical symbols of the mathematician." (Arthur S Eddington, "Science and the Unseen World", 1929)

"In every important advance the physicist finds that the fundamental laws are simplified more and more as experimental research advances. He is astonished to notice how sublime order emerges from what appeared to be chaos. And this cannot be traced back to the workings of his own mind but is due to a quality that is inherent in the world of perception." (Albert Einstein, 1932)

"[…] the supreme task of the physicist is the discovery of the most general elementary laws from which the world-picture can be deduced logically. […] the fact that in science we have to be content with an incomplete picture of the physical universe is not due to the nature of the universe itself but rather to us." (Albert Einstein, [preface to Max Planck's "Where is Science Going?"] 1933)

"[...] the mathematical physicist [...] obtains much prestige from the physicists because they are impressed with the amount of mathematics he knows, and much prestige from the mathematicians, because they are impressed with the amount of physics he knows." (William F G Swann, "The Architecture of the Universe", 1934)

"Pure mathematics and physics are becoming ever more closely connected, though their methods remain different. One may describe the situation by saying that the mathematician plays a game in which he himself invents the rules while the while the physicist plays a game in which the rules are provided by Nature, but as time goes on it becomes increasingly evident that the rules which the mathematician finds interesting are the same as those which Nature has chosen." (Paul A M Dirac, "The Relation Between Mathematics and Physics", Proceedings of the Royal Society of Edinburgh, 1938-1939)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Literature: On Memory (From Fiction to Science-Fiction)

"Some dreams I have had in this cottage seem to give strength to the opinion that there is a psychic memory attached to certain neighbo...