20 September 2021

On Computers (-1969)

"Let it be remarked [...] that an important difference between the way in which we use the brain and the machine is that the machine is intended for many successive runs, either with no reference to each other, or with a minimal, limited reference, and that it can be cleared between such runs; while the brain, in the course of nature, never even approximately clears out its past records. Thus the brain, under normal circumstances, is not the complete analogue of the computing machine but rather the analogue of a single run on such a machine." (Norbert Wiener, "Cybernetics: Or Control and Communication in the Animal and the Machine", 1948)

"A computer would deserve to be called intelligent if it could deceive a human into believing that it was human." (Alan Turing, "Computing Machinery and Intelligence" , Mind Vol. 59, 1950)

"A computer is a person or machine that is able to take in information (problems and data), perform reasonable operations on the iformation, and put out answers. A computer is identified by the fact that it (or he) handles information reasonably." (Edmund C Berkeley & Lawrence Wainwright, Computers: Their Operation and Applications", 1956)

"There are two types of systems engineering - basis and applied. [...] Systems engineering is, obviously, the engineering of a system. It usually, but not always, includes dynamic analysis, mathematical models, simulation, linear programming, data logging, computing, optimating, etc., etc. It connotes an optimum method, realized by modern engineering techniques. Basic systems engineering includes not only the control system but also all equipment within the system, including all host equipment for the control system. Applications engineering is - and always has been - all the engineering required to apply the hardware of a hardware manufacturer to the needs of the customer. Such applications engineering may include, and always has included where needed, dynamic analysis, mathematical models, simulation, linear programming, data logging, computing, and any technique needed to meet the end purpose - the fitting of an existing line of production hardware to a customer's needs. This is applied systems engineering." (Instruments and Control Systems Vol. 31, 1958)

"An information retrieval system is therefore defined here as any device which aids access to documents specified by subject, and the operations associated with it. The documents can be books, journals, reports, atlases, or other records of thought, or any parts of such records - articles, chapters, sections, tables, diagrams, or even particular words. The retrieval devices can range from a bare list of contents to a large digital computer and its accessories. The operations can range from simple visual scanning to the most detailed programming." (Brian C Vickery, "The Structure of Information Retrieval Systems", 1959)

"Computers do not decrease the need for mathematical analysis, but rather greatly increase this need. They actually extend the use of analysis into the fields of computers and computation, the former area being almost unknown until recently, the latter never having been as intensively investigated as its importance warrants. Finally, it is up to the user of computational equipment to define his needs in terms of his problems, In any case, computers can never eliminate the need for problem-solving through human ingenuity and intelligence." (Richard E Bellman & Paul Brock, "On the Concepts of a Problem and Problem-Solving", American Mathematical Monthly 67, 1960)

"There is the very real danger that a number of problems which could profitably be subjected to analysis, and so treated by simpler and more revealing techniques. will instead be routinely shunted to the computing machines [...] The role of computing machines as a mathematical tool is not that of a panacea for all computational ills." (Richard E Bellman & Paul Brock, "On the Concepts of a Problem and Problem-Solving", American Mathematical Monthly 67, 1960)

"Cybernetics is concerned primarily with the construction of theories and models in science, without making a hard and fast distinction between the physical and the biological sciences. The theories and models occur both in symbols and in hardware, and by 'hardware’ we shall mean a machine or computer built in terms of physical or chemical, or indeed any handleable parts. Most usually we shall think of hardware as meaning electronic parts such as valves and relays. Cybernetics insists, also, on a further and rather special condition that distinguishes it from ordinary scientific theorizing: it demands a certain standard of effectiveness. In this respect it has acquired some of the same motive power that has driven research on modern logic, and this is especially true in the construction and application of artificial languages and the use of operational definitions. Always the search is for precision and effectiveness, and we must now discuss the question of effectiveness in some detail. It should be noted that when we talk in these terms we are giving pride of place to the theory of automata at the expense, at least to some extent, of feedback and information theory." (Frank H George, "The Brain As A Computer", 1962)

"These machines have no common sense; they have not yet learned to 'think', and they do exactly as they are told, no more and no less. This fact is the hardest concept to grasp when one first tries to use a computer." (Donald Knuth, "The Art of Computer Programming, Volume 1: Fundamental Algorithms", 1968)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...