20 September 2021

On Computers (1980-1989)

"It is essential to realize that a computer is not a mere 'number cruncher', or supercalculating arithmetic machine, although this is how computers are commonly regarded by people having no familiarity with artificial intelligence. Computers do not crunch numbers; they manipulate symbols. [...] Digital computers originally developed with mathematical problems in mind, are in fact general purpose symbol manipulating machines." (Margaret A Boden, "Minds and mechanisms", 1981)

"The basic idea of cognitive science is that intelligent beings are semantic engines - in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found." (John Haugeland, "Semantic Engines: An introduction to mind design", 1981)

"Computers and robots replace humans in the exercise of mental functions in the same way as mechanical power replaced them in the performance of physical tasks. As time goes on, more and more complex mental functions will be performed by machines. Any worker who now performs his task by following specific instructions can, in principle, be replaced by a machine. This means that the role of humans as the most important factor of production is bound to diminish - in the same way that the role of horses in agricultural production was first diminished and then eliminated by the introduction of tractors."  (Wassily Leontief, National perspective: The definition of problem and opportunity, 1983)

"If arithmetical skill is the measure of intelligence, then computers have been more intelligent than all human beings all along. If the ability to play chess is the measure, then there are computers now in existence that are more intelligent than any but a very few human beings. However, if insight, intuition, creativity, the ability to view a problem as a whole and guess the answer by the “feel” of the situation, is a measure of intelligence, computers are very unintelligent indeed. Nor can we see right now how this deficiency in computers can be easily remedied, since human beings cannot program a computer to be intuitive or creative for the very good reason that we do not know what we ourselves do when we exercise these qualities." (Isaac Asimov, "Machines That Think", 1983)

"The digital-computer field defined computers as machines that manipulated numbers. The great thing was, adherents said, that everything could be encoded into numbers, even instructions. In contrast, scientists in AI [artificial intelligence] saw computers as machines that manipulated symbols. The great thing was, they said, that everything could be encoded into symbols, even numbers." (Allen Newell, "Intellectual Issues in the History of Artificial Intelligence", 1983)

"Computation offers a new means of describing and investigating scientific and mathematical systems. Simulation by computer may be the only way to predict how certain complicated systems evolve." (Stephen Wolfram, "Computer Software in Science and Mathematics", 1984)

"In the real world, none of these assumptions are uniformly valid. Often people want to know why mathematics and computers cannot be used to handle the meaningful problems of society, as opposed, let us say, to the moon boondoggle and high energy-high cost physics. The answer lies in the fact that we don't know how to describe the complex systems of society involving people, we don't understand cause and effect, which is to say the consequences of decisions, and we don't even know how to make our objectives reasonably precise. None of the requirements of classical science are met. Gradually, a new methodology for dealing with these 'fuzzy' problems is being developed, but the path is not easy." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"Let us change our traditional attitude to the construction of programs: Instead of imagining that our main task is to instruct a computer what to do, let us concentrate rather on explaining to human beings what we want a computer to do." (Donald E Knuth, "Literate Programming", 1984)

"Scientific laws give algorithms, or procedures, for determining how systems behave. The computer program is a medium in which the algorithms can be expressed and applied. Physical objects and mathematical structures can be represented as numbers and symbols in a computer, and a program can be written to manipulate them according to the algorithms. When the computer program is executed, it causes the numbers and symbols to be modified in the way specified by the scientific laws. It thereby allows the consequences of the laws to be deduced." (Stephen Wolfram, "Computer Software in Science and Mathematics", 1984)

"The trouble with an analog computer is that one begins to construct mathematical models which can be treated using an analog computer. In many cases this is not realistic." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"Under pressure from the computer, the question of mind in relation to machine is becoming a central cultural preoccupation." (Sherry Turkle, "The Second Self: Computers and the Human Spirit", 1984)

"A computer is an interpreted automatic formal system - that is to say, a symbol-manipulating machine." (John Haugeland, "Artificial intelligence: The very idea", 1985)

"Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped onto the other (the computer)." (George Johnson, Machinery of the Mind: Inside the New Science of Artificial Intelligence, 1986)

"Just like a computer, we must remember things in the order in which entropy increases. This makes the second law of thermodynamics almost trivial. Disorder increases with time because we measure time in the direction in which disorder increases."  (Stephen Hawking, "A Brief History of Time", 1988)

"The principle of maximum diversity operates both at the physical and at the mental level. It says that the laws of nature and the initial conditions are such as to make the universe as interesting as possible.  As a result, life is possible but not too easy. Always when things are dull, something new turns up to challenge us and to stop us from settling into a rut. Examples of things which make life difficult are all around us: comet impacts, ice ages, weapons, plagues, nuclear fission, computers, sex, sin and death.  Not all challenges can be overcome, and so we have tragedy. Maximum diversity often leads to maximum stress. In the end we survive, but only by the skin of our teeth." (Freeman J Dyson, "Infinite in All Directions", 1988)

"Cybernetics is simultaneously the most important science of the age and the least recognized and understood. It is neither robotics nor freezing dead people. It is not limited to computer applications and it has as much to say about human interactions as it does about machine intelligence. Today’s cybernetics is at the root of major revolutions in biology, artificial intelligence, neural modeling, psychology, education, and mathematics. At last there is a unifying framework that suspends long-held differences between science and art, and between external reality and internal belief." (Paul Pangaro, "New Order From Old: The Rise of Second-Order Cybernetics and Its Implications for Machine Intelligence", 1988)

"A popular myth says that the invention of the computer diminishes our sense of ourselves, because it shows that rational thought is not special to human beings, but can be carried on by a mere machine. It is a short stop from there to the conclusion that intelligence is mechanical, which many people find to be an affront to all that is most precious and singular about their humanness." (Jeremy Campbell, "The improbable machine", 1989)

"Fuzziness, then, is a concomitant of complexity. This implies that as the complexity of a task, or of a system for performing that task, exceeds a certain threshold, the system must necessarily become fuzzy in nature. Thus, with the rapid increase in the complexity of the information processing tasks which the computers are called upon to perform, we are reaching a point where computers will have to be designed for processing of information in fuzzy form. In fact, it is the capability to manipulate fuzzy concepts that distinguishes human intelligence from the machine intelligence of current generation computers. Without such capability we cannot build machines that can summarize written text, translate well from one natural language to another, or perform many other tasks that humans can do with ease because of their ability to manipulate fuzzy concepts." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Alexander von Humboldt - Collected Quotes

"Whatever relates to extent and quantity may be represented by geometrical figures. Statistical projections which speak to the senses w...