"From a historical viewpoint, computationalism is a sophisticated version of behaviorism, for it only interpolates the computer program between stimulus and response, and does not regard novel programs as brain creations. [...] The root of computationalism is of course the actual similarity between brains and computers, and correspondingly between natural and artificial intelligence. The two are indeed similar because the artifacts in question have been designed to perform analogs of certain brain functions. And the computationalist program is an example of the strategy of treating similars as identicals." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)
"[...] we also distinguish knowledge from information, because some pieces of information, such as questions, orders, and absurdities do not constitute knowledge. And also because computers process information but, since they lack minds, they cannot be said to know anything." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)
"System dynamics models have little impact unless they change the way people perceive a situation. A model must help to organize information in a more understandable way. A model should link the past to the present by showing how present conditions arose, and extend the present into persuasive alternative futures under a variety of scenarios determined by policy alternatives. In other words, a system dynamics model, if it is to be effective, must communicate with and modify the prior mental models. Only people's beliefs - that is, their mental models - will determine action. Computer models must relate to and improve mental models if the computer models are to fill an effective role." (Jay W Forrester, "Modeling for What Purpose?", The Systems Thinker Vol. 24 (2), 2013)
"Now think about the prospect of competition from computers instead of competition from human workers. On the supply side, computers are far more different from people than any two people are different from each other: men and machines are good at fundamentally different things. People have intentionality - we form plans and make decisions in complicated situations. We’re less good at making sense of enormous amounts of data. Computers are exactly the opposite: they excel at efficient data processing, but they struggle to make basic judgments that would be simple for any human." (Peter Thiel & Blake Masters, "Zero to One: Notes on Startups, or How to Build the Future", 2014)
"With fast computers and plentiful data, finding statistical significance is trivial. If you look hard enough, it can even be found in tables of random numbers."
"Working an integral or performing a linear regression is something a computer can do quite effectively. Understanding whether the result makes sense - or deciding whether the method is the right one to use in the first place - requires a guiding human hand. When we teach mathematics we are supposed to be explaining how to be that guide. A math course that fails to do so is essentially training the student to be a very slow, buggy version of Microsoft Excel." (Jordan Ellenberg, "How Not to Be Wrong: The Power of Mathematical Thinking", 2014)
"The term data, unlike the related terms facts and evidence, does not connote truth. Data is descriptive, but data can be erroneous. We tend to distinguish data from information. Data is a primitive or atomic state (as in ‘raw data’). It becomes information only when it is presented in context, in a way that informs. This progression from data to information is not the only direction in which the relationship flows, however; information can also be broken down into pieces, stripped of context, and stored as data. This is the case with most of the data that’s stored in computer systems. Data that’s collected and stored directly by machines, such as sensors, becomes information only when it’s reconnected to its context." (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)
"[…] the usefulness of mathematics is by no means limited to finite objects or to those that can be represented with a computer. Mathematical concepts depending on the idea of infinity, like real numbers and differential calculus, are useful models for certain aspects of physical reality." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)
"The human mind isn’t a computer; it cannot progress in an orderly fashion down a list of candidate moves and rank them by a score down to the hundredth of a pawn the way a chess machine does. Even the most disciplined human mind wanders in the heat of competition. This is both a weakness and a strength of human cognition. Sometimes these undisciplined wanderings only weaken your analysis. Other times they lead to inspiration, to beautiful or paradoxical moves that were not on your initial list of candidates." (Garry Kasparov, "Deep Thinking", 2017)
"There are other problems with Big Data. In any large data set, there are bound to be inconsistencies, misclassifications, missing data - in other words, errors, blunders, and possibly lies. These problems with individual items occur in any data set, but they are often hidden in a large mass of numbers even when these numbers are generated out of computer interactions." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)
No comments:
Post a Comment