15 May 2021

David Berlinski - Collected Quotes

"The body of mathematics to which the calculus gives rise embodies a certain swashbuckling style of thinking, at once bold and dramatic, given over to large intellectual gestures and indifferent, in large measure, to any very detailed description of the world. It is a style that has shaped the physical but not the biological sciences, and its success in Newtonian mechanics, general relativity and quantum mechanics is among the miracles of mankind. But the era in thought that the calculus made possible is coming to an end. Everyone feels this is so and everyone is right." (David Berlinski, "A Tour of the Calculus", 1995)

"Yet everything has a beginning, everything comes to an end, and if the universe actually began in some dense explosion, thus creating time and space, so time and space are themselves destined to disappear, the measure vanishing with the measured, until with another ripple running through the primordial quantum field, something new arises from nothingness once again." (David Berlinski, "A Tour of the Calculus", 1995)

"The motion of the mind is conveyed along a cloud of meaning. There is this paradox that we get to meaning only when we strip the meaning from symbols." (David Berlinski, "The Advent of the Algorithm: The Idea that Rules the World", 2000)

"A definition in mathematics is an exercise in uncovering the essence of things, one reason that good definitions are so hard to pull off, since a definition brings the essence to light, and the light brings the definition to life." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"A five-dimensional space is not a strange deformation of ordinary space, one that only mathematicians can see, but a place where numbers are collected in ordered sets. When string theorists talk of the eleven dimensions required by their latest theory, they are not encouraging one another to search for eight otherwise familiar spatial dimensions that have somehow become lost. They are saying only that for their purposes, eleven numbers are needed to specify points. Where they are is no one’s business." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005) 

"A group is a collection of objects, one that is alive in the sense that some underlying principle of productivity is at work engendering new members from old. […] Like many other highly structured objects, groups have parts, and in particular they may well have subgroups as parts, one group nested within a large group, kangarette to kangaroo." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"A proof in mathematics is an argument and so falls under the controlling power of logic itself. […] Within mathematics, a proof is an intellectual structure in which premises are conveyed to their conclusions by specific inferential steps. Assumptions in mathematics are called axioms, and conclusions theorems. This definition may be sharpened a little bit. A proof is a finite series of statements such that every statement is either an axiom or follows directly from an axiom by means of tight, narrowly defined rules. The mathematician’s business is to derive theorems from his axioms; if his system has been carefully constructed, a gross cascade of theorems will flow from a collection of carefully chosen axioms." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Beyond the theory of complex numbers, there is the much greater and grander theory of the functions of a complex variable, as when the complex plane is mapped to the complex plane, complex numbers linking themselves to other complex numbers. It is here that complex differentiation and integration are defined. Every mathematician in his education studies this theory and surrenders to it completely. The experience is like first love." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"But like every profound mathematical idea, the concept of a group reveals something about the nature of the world that lies beyond the mathematician’s symbols. […] There is […] a royal road between group theory and the most fundamental processes in nature. Some groups represent- they are reflections of - continuous rotations, things that whiz around and around smoothly." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"If the method of proof offers the mathematician the prospect of certainty, it is a form of certainty that is itself conditional. A proof, after all, conveys assumptions to conclusions, or axioms to theorems. If the hammer of certainty falls on the theorems, it cannot fall on the axioms with equal force." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Mathematics is insight and invention and the flash of something grasped at once, but it is also something salt-cleaned and stout as a Gothic cathedral." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Practical geometry is an empirical undertaking, living and breathing and sweating in the real world where measurements are always approximate and things are fudged or smeared or jumbled up. Within Euclidean geometry points are concentrated, lines straightened, angles narrowed; idealizations are made, and some parts of experience discarded and other parts embraced." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Set theory is unusual in that it deals with remarkably simple but apparently ineffable objects. A set is a collection, a class, an ensemble, a batch, a bunch, a lot, a troop, a tribe. To anyone incapable of grasping the concept of a set, these verbal digressions are apt to be of little help. […] A set may contain finitely many or infinitely many members. For that matter, a set such as {} may contain no members whatsoever, its parentheses vibrating around a mathematical black hole. To the empty set is reserved the symbol Ø, the figure now in use in daily life to signify access denied or don’t go, symbolic spillovers, I suppose, from its original suggestion of a canceled eye." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"The calculus is a theory of continuous change - processes that move smoothly and that do not stop, jerk, interrupt themselves, or hurtle over gaps in space and time. The supreme example of a continuous process in nature is represented by the motion of the planets in the night sky as without pause they sweep around the sun in elliptical orbits; but human consciousness is also continuous, the division of experience into separate aspects always coordinated by some underlying form of unity, one that we can barely identify and that we can describe only by calling it continuous." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"There is weirdness in non-Euclidean geometry, but not because of anything that geometers might say about the ordinary fond familiar world in which space is flat, angles sharp, and only curves are curved. Non-Euclidean geometry is an instrument in the enlargement of the mathematician’s self-consciousness, and so comprises an episode in a long, difficult, and extended exercise in which the human mind attempts to catch sight of itself catching sight of itself, and so without end." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"What a wealth of insight Euler’s formula reveals and what delicacy and precision of reasoning it exhibits. It provides a definition of complex exponentiation: It is a definition of complex exponentiation, but the definition proceeds in the most natural way, like a trained singer’s breath. It closes the complex circle once again by guaranteeing that in taking complex numbers to complex powers the mathematician always returns with complex numbers. It justifies the method of infinite series and sums. And it exposes that profound and unsuspected connection between exponential and trigonometric functions; with Euler’s formula the very distinction between trigonometric and exponential functions acquires the shimmer of a desert illusion." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Mathematicians are like pilots who maneuver their great lumbering planes into the sky without ever asking how the damn things stay aloft. […] The computer has in turn changed the very nature of mathematical experience, suggesting for the first time that mathematics, like physics, may yet become an empirical discipline, a place where things are discovered because they are seen. [...] The existence and nature of mathematics is a more compelling and far deeper problem than any of the problems raised by mathematics itself." (David Berlinski)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...