"The materialistic point of view in psychology can claim, at best, only the value of an heuristic hypothesis." (Wilhelm Wundt, "Principles of Physiological Psychology", 1874)
"Heuristic reasoning is good in itself. What is bad is to mix up heuristic reasoning with rigorous proof. What is worse is to sell heuristic reasoning for rigorous proof." (George Pólya, "How to Solve It", 1945)
"Heuristic, or heuretic, or 'ars inveniendi' was the name of a certain branch of study, not very clearly circumscribed, belonging to logic, or to philosophy, or to psychology, often outlined, seldom presented in detail, and as good as forgotten today. The aim of heuristic is to study the methods and rules of discovery and invention. [...] Heuristic, as an adjective, means 'serving to discover'." (George Pólya, "How to Solve It", 1945)
"Heuristic reasoning is reasoning not regarded as final and strict but as provisional and plausible only, whose purpose is to discover the solution of the present problem. We are often obliged to use heuristic reasoning. We shall attain complete certainty when we shall have obtained the complete solution, but before obtaining certainty we must often be satisfied with a more or less plausible guess. We may need the provisional before we attain the final. We need heuristic reasoning when we construct a strict proof as we need scaffolding when we erect a building." (George Pólya, "How to Solve It", 1945)
"The attempt to characterize exactly models of an empirical theory almost inevitably yields a more precise and clearer understanding of the exact character of a theory. The emptiness and shallowness of many classical theories in the social sciences is well brought out by the attempt to formulate in any exact fashion what constitutes a model of the theory. The kind of theory which mainly consists of insightful remarks and heuristic slogans will not be amenable to this treatment. The effort to make it exact will at the same time reveal the weakness of the theory." (Patrick Suppes," A Comparison of the Meaning and Uses of Models in Mathematics and the Empirical Sciences", Synthese Vol. 12 (2/3), 1960)
"Factoring big numbers is a strange kind of mathematics that closely resembles the experimental sciences, where nature has the last and definitive word. […] as with the experimental sciences, both rigorous and heuristic analyses can be valuable in understanding the subject and moving it forward. And, as with the experimental sciences, there is sometimes a tension between pure and applied practitioners." (Carl B Pomerance, "A Tale of Two Sieves", The Notices of the American Mathematical Society 43, 1996)
"[…] mathematics does not come to us written indelibly on Nature’s Tablets, but rather is the product of a controlled search governed by metaphorical considerations, the premier instance being the heuristics of the conservation principles." (Philip Mirowski, "More Heat than Light: Economics as Social Physics: Physics as Nature’s Economics", 1989)
"Mathematicians, like the rest of us, cherish clever ideas; in particular they delight in an ingenious picture. But this appreciation does not overwhelm a prevailing skepticism. After all, a diagram is - at best - just a special case and so can't establish a general theorem. Even worse, it can be downright misleading. Though not universal, the prevailing attitude is that pictures are really no more than heuristic devices; they are psychologically suggestive and pedagogically important - but they prove nothing. I want to oppose this view and to make a case for pictures having a legitimate role to play as evidence and justification - a role well beyond the heuristic. In short, pictures can prove theorems." (James R Brown, "Philosophy of Mathematics: An Introduction to the World of Proofs and Pictures", 1999)
"In the language of mental models, such past experience provided the default assumptions necessary to fill the gaps in the emerging and necessarily incomplete framework of a relativistic theory of gravitation. It was precisely the nature of these default assumptions that allowed them to be discarded again in the light of novel information - provided, for instance, by the further elaboration of the mathematical formalism - without, however, having to abandon the underlying mental models which could thus continue to function as heuristic orientations." (Jürgen Renn, "Before the Riemann Tensor: The Emergence of Einstein’s Double Strategy", [in "The Universe of General Relativity"] 2000)
"You can often hear from non-mathematicians, especially from philosophers, that mathematics consists exclusively in drawing conclusions from clearly stated premises; and that in this process, it makes no difference what these premises signify, whether they are true or fa1se, provided only that they do not contradict one another. But a per. son who has done productive mathematical work will talk quite differently. In fact these people [the non-mathematicians] are thinking only of the crystallized form into which finished mathematica1 theories are finally cast. However, the investigator himself, in mathematics as in every other science, does not work in this rigorous deductive fashion. On the contrary, he makes essential use of his imagination and proceeds inductively aided by heuristic expedients. One can give numerous examples of mathematicians who have discovered theorems of the greatest importance which they were unable to prove. Should one then refuse to recognize this as a great accomplishment and in deference to the above definition insist that this is not mathematics? After all it is an arbitrary thing how the word is to be used, but no judgment of value can deny that the inductive work of the person who first announces the theorem is at least as valuable as the deductive work. of the one who proves it. For both are equally necessary and the discovery is the presupposition of the later conclusion." (Felix Klein)
No comments:
Post a Comment