16 May 2021

On Topology V

"In mathematics, logic, linguistics, and other abstract disciplines, the systems are not assigned to objects. They are defined by an enumeration of the variables, their admissible values, and their algebraic, topological, grammatical, and other properties which, in the given case, determine the relations between the variables under consideration." (George Klir, "An approach to general systems theory", 1969)

"Because of its foundation in topology, catastrophe theory is qualitative, not quantitative. Just as geometry treated the properties of a triangle without regard to its size, so topology deals with properties that have no magnitude, for example, the property of a given point being inside or outside a closed curve or surface. This property is what topologists call 'invariant' -it does not change even when the curve is distorted. A topologist may work with seven-dimensional space, but he does not and cannot measure (in the ordinary sense) along any of those dimensions. The ability to classify and manipulate all types of form is achieved only by giving up concepts such as size, distance, and rate. So while catastrophe theory is well suited to describe and even to predict the shape of processes, its descriptions and predictions are not quantitative like those of theories built upon calculus. Instead, they are rather like maps without a scale: they tell us that there are mountains to the left, a river to the right, and a cliff somewhere ahead, but not how far away each is, or how large." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"Geometry and topology most often deal with geometrical figures, objects realized as a set of points in a Euclidean space (maybe of many dimensions). It is useful to view these objects not as rigid (solid) bodies, but as figures that admit continuous deformation preserving some qualitative properties of the object. Recall that the mapping of one object onto another is called continuous if it can be determined by means of continuous functions in a Cartesian coordinate system in space. The mapping of one figure onto another is called homeomorphism if it is continuous and one-to-one, i.e. establishes a one-to-one correspondence between points of both figures." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"Homeomorphism is one of the basic concepts in topology. Homeomorphism, along with the whole topology, is in a sense the basis of spatial perception. When we look at an object, we see, say, a telephone receiver or a ring-shaped roll and first of all pay attention to the geometrical shape (although we do not concentrate on it specially) - an oblong figure thickened at the ends or a round rim with a large hole in the middle. Even if we deliberately concentrate on the shape of the object and forget about its practical application, we do not yet 'see' the essence of the shape. The point is that oblongness, roundness, etc. are metric properties of the object. The topology of the form lies 'beyond them'." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"Since geometry is the mathematical idealization of space, a natural way to organize its study is by dimension. First we have points, objects of dimension O. Then come lines and curves, which are one-dimensional objects, followed by two-dimensional surfaces, and so on. A collection of such objects from a given dimension forms what mathematicians call a 'space'. And if there is some notion enabling us to say when two objects are 'nearby' in such a space, then it's called a topological space." (John L Casti, "Five Golden Rules", 1995)

"One of the basic tasks of topology is to learn to distinguish nonhomeomorphic figures. To this end one introduces the class of invariant quantities that do not change under homeomorphic transformations of a given figure. The study of the invariance of topological spaces is connected with the solution of a whole series of complex questions: Can one describe a class of invariants of a given manifold? Is there a set of integral invariants that fully characterizes the topological type of a manifold? and so forth." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"Topology studies those characteristics of figures which are preserved under a certain class of continuous transformations. Imagine two figures, a square and a circular disk, made of rubber. Deformations can convert the square into the disk, but without tearing the figure it is impossible to convert the disk by any deformation into an annulus. In topology, this intuitively obvious distinction is formalized." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"[...] there is no area of mathematics where thinking abstractly has paid more handsome dividends than in topology, the study of those properties of geometrical objects that remain unchanged when we deform or distort them in a continuous fashion without tearing, cutting, or breaking them." (John L Casti, "Five Golden Rules", 1995)

"At first, topology can seem like an unusually imprecise branch of mathematics. It’s the study of squishy play-dough shapes capable of bending, stretching and compressing without limit. But topologists do have some restrictions: They cannot create or destroy holes within shapes. […] While this might seem like a far cry from the rigors of algebra, a powerful idea called homology helps mathematicians connect these two worlds. […] homology infers an object’s holes from its boundaries, a more precise mathematical concept. To study the holes in an object, mathematicians only need information about its boundaries." (Kelsey Houston-Edwards, "How Mathematicians Use Homology to Make Sense of Topology", Quanta Magazine, 2021) [source]

"In geometry, shapes like circles and polyhedra are rigid objects; the tools of the trade are lengths, angles and areas. But in topology, shapes are flexible things, as if made from rubber. A topologist is free to stretch and twist a shape. Even cutting and gluing are allowed, as long as the cut is precisely reglued. A sphere and a cube are distinct geometric objects, but to a topologist, they’re indistinguishable." (David E Richeson, "Topology 101: The Hole Truth", 2021) [source]

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...