11 May 2021

Mathematics through Students' Eyes III

"Finally, students must learn to realize that mathematics is a science with a long history behind it, and that no true insight into the mathematics of the present day can be obtained without some acquaintance with its historical background. In the first-place time gives an additional dimension to one's mental picture both of mathematics as a whole, and of each individual branch." (André Weil, "The Mathematical Curriculum", 1954)

"Mathematics is a model of exact reasoning, an absorbing challenge to the mind, an esthetic experience for creators and some students, a nightmarish experience to other students, and an outlet for the egotistic display of mental power." (Morris Kline, "Mathematics and the Physical World", 1959)

"Formerly, the beginner was taught to crawl through the underbrush, never lifting his eyes to the trees; today he is often made to focus on the curvature of the universe, missing even the earth." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"I would therefore urge that people be introduced to [the logistic equation] early in their mathematical education. This equation can be studied phenomenologically by iterating it on a calculator, or even by hand. Its study does not involve as much conceptual sophistication as does elementary calculus. Such study would greatly enrich the student’s intuition about nonlinear systems. Not only in research but also in the everyday world of politics and economics, we would all be better off if more people realized that simple nonlinear systems do not necessarily possess simple dynamical properties." (Robert M May, "Simple Mathematical Models with Very Complicated Dynamics", Nature Vol. 261 (5560), 1976)

"Students enjoy […] and gain in their understanding of today's mathematics through analyzing older and alternative approaches." (Lucas N H Bunt et al, "The Historical Roots of Elementary Mathematics", 1976)

"Some people believe that a theorem is proved when a logically correct proof is given; but some people believe a theorem is proved only when the student sees why it is inevitably true." (Wesley R Hamming, "Coding and Information Theory", 1980)

"Contrary to the impression students acquire in school, mathematics is not just a series of techniques. Mathematics tells us what we have never known or even suspected about notable phenomena and in some instances even contradicts perception. It is the essence of our knowledge of the physical world. It not only transcends perception but outclasses it." (Morris Kline, "Mathematics and the Search for Knowledge", 1985)

"Mathematics is often thought to be difficult and dull. Many people avoid it as much as they can and as a result much of the population is mathematically illiterate. This is in part due to the relative lack of importance given to numeracy in our culture, and to the way that the subject has been presented to students." (Julian Havil , "Gamma: Exploring Euler's Constant", 2003)

"As students, we learned mathematics from textbooks. In textbooks, mathematics is presented in a rigorous and logical way: definition, theorem, proof, example. But it is not discovered that way. It took many years for a mathematical subject to be understood well enough that a cohesive textbook could be written. Mathematics is created through slow, incremental progress, large leaps, missteps, corrections, and connections." (Richard S Richeson, "Eulers Gem: The Polyhedron Formula and the birth of Topology", 2008)

"A mathematical entity is a concept, a shared thought. Once you have acquired it, you have it available, for inspection or manipulation. If you understand it correctly (as a student, or as a professional) your ‘mental model’ of that entity, your personal representative of it, matches those of others who understand it correctly. (As is verified by giving the same answers to test questions.) The concept, the cultural entity, is nothing other than the collection of the mutually congruent personal representatives, the ‘mental models’, possessed by those participating in the mathematical culture." (Reuben Hersh, "Experiencing Mathematics: What Do We Do, when We Do Mathematics?", 2014)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...