"[…] mathematical verities flow from a small number of self-evident propositions by a chain of impeccable reasonings; they impose themselves not only on us, but on nature itself. They fetter, so to speak, the Creator and only permit him to choose between some relatively few solutions. A few experiments then will suffice to let us know what choice he has made. From each experiment a number of consequences will follow by a series of mathematical deductions, and in this way each of them will reveal to us a corner of the universe. This, to the minds of most people, and to students who are getting their first ideas of physics, is the origin of certainty in science." (Henri Poincaré, "The Foundations of Science", 1913)
"The way to enable a student to apprehend the instrumental value of arithmetic is not to lecture him on the benefit it will be to him in some remote and uncertain future, but to let him discover that success in something he is interested in doing depends on ability to use numbers." (John Dewey, "Democracy and Education: An Introduction to the Philosophy of Education", 1916)
"It seems to be the impression among students that mathematical physics consists in deriving a large number of partial differential equations and then solving them, individually, by an assortment of special mutually unrelated devices. It has not been made clear that there is any underlying unity of method and one has often been left entirely in the dark as to what first suggested a particular device to the mind of its inventor." (Arthur G Webster, "Partial Differential Equations of Mathematical Physics", 1927)
"[…] there are terms which cannot be defined, such as number and quantity. Any attempt at a definition would only throw difficulty in the student’s way, which is already done in geometry by the attempts at an explanation of the terms point, straight line, and others, which are to be found in treatise on that subject." (Augustus de Morgan, "On the Study and Difficulties of Mathematics", 1943)
"To some people, statistics is ‘quartered pies, cute little battleships and tapering rows of sturdy soldiers in diversified uniforms’. To others, it is columns and columns of numerical facts. Many regard it as a branch of economics. The beginning student of the subject considers it to be largely mathematics." (The Editors, "Statistics, The Physical Sciences and Engineering", The American Statistician, Vol. 2, No. 4, 1948)
"Unfortunately, the mechanical way in which calculus sometimes is taught fails to present the subject as the outcome of a dramatic intellectual struggle which has lasted for twenty-five hundred years or more, which is deeply rooted in many phases of human endeavors and which will continue as long as man strives to understand himself as well as nature. Teachers, students, and scholars who really want to comprehend the forces and appearances of science must have some understanding of the present aspect of knowledge as a result of historical evolution." (Richard Curand [forward to Carl B Boyer’s "The History of the Calculus and Its Conceptual Development", 1949])
No comments:
Post a Comment