"It bothers me that, according to the laws as we understand them today, it takes a computing machine an infinite number of logical operations to figure out what goes on in no matter how tiny a region of space, and no matter how tiny a region of time. How can all that be going on in that tiny space? Why should it take an infinite amount of logic to figure out what a tiny piece of space-time is going to do? So I have often made the hypothesis that ultimately physics will not require a mathematical statement, that in the end the machinery will be revealed and the laws will turn out to be simple, like the checker board with all its apparent complexities." (Richard P Feynman, "The Character of Physical Law", 1965)
"Perhaps the most exciting implication [of CA representation of biological phenomena] is the possibility that life had its origin in the vicinity of a phase transition and that evolution reflects the process by which life has gained local control over a successively greater number of environmental parameters affecting its ability to maintain itself at a critical balance point between order and chaos." ( Chris G Langton, "Computation at the Edge of Chaos: Phase Transitions and Emergent Computation", Physica D (42), 1990)
"Cellular automata are now being used to model varied physical phenomena normally modelled by wave equations, fluid dynamics, Ising models, etc. We hypothesize that there will be found a single cellular automaton rule that models all of microscopic physics; and models it exactly." (Edward Fredkin, "Nonlinear Phenomena", Physica D (45), 1990)
"Over and over again we will see the same kind of thing: that even though the underlying rules for a system are simple, and even though the system is started from simple initial conditions, the behavior that the system shows can nevertheless be highly complex." (Stephen Wolfram, "A New Kind of Science", 2002)
"Cellular Automata (CA) are discrete, spatially explicit extended dynamic systems composed of adjacent cells characterized by an internal state whose value belongs to a finite set. The updating of these states is made simultaneously according to a common local transition rule involving only a neighborhood of each cell." (Ramon Alonso-Sanz, "Cellular Automata with Memory", 2009)
"Cellular automata are dynamical systems that are discrete in space, time, and value. A state of a cellular automaton is a spatial array of discrete cells, each containing a value chosen from a finite alphabet. The state space for a cellular automaton is the set of all such configurations." (Burton Voorhees, "Additive Cellular Automata", 2009)
"Cellular automata (CA) are idealizations of physical systems in which both space and time are assumed to be discrete and each of the interacting units can have only a finite number of discrete states." (Andreas Schadschneider et al, "Vehicular Traffic II: The Nagel–Schreckenberg Model" , 2011)
"Discrete dynamic systems that evolve in space and time. A cellular automaton is composed of a set of discrete elements – the cells – connected with other cells of the automaton, and in each time unit each cell receives information about the current state of the cells to which it is connected. The cellular automaton evolve according a transition rule that specifies the current possible states of each cell as a function of the preceding state of the cell and the states of the connected cells." (Francesc S. Beltran et al, "A Language Shift Simulation Based on Cellular Automata", 2011)
No comments:
Post a Comment