"The most important application of the theory of probability is to what we may call 'chance-like' or 'random' events, or occurrences. These seem to be characterized by a peculiar kind of incalculability which makes one disposed to believe - after many unsuccessful attempts - that all known rational methods of prediction must fail in their case. We have, as it were, the feeling that not a scientist but only a prophet could predict them. And yet, it is just this incalculability that makes us conclude that the calculus of probability can be applied to these events." (Karl R Popper, "The Logic of Scientific Discovery", 1934)
"The epistemological value of probability theory is based on the fact that chance phenomena, considered collectively and on a grand scale, create non-random regularity." (Andrey Kolmogorov, "Limit Distributions for Sums of Independent Random Variables", 1954)
"Random chance was not a sufficient explanation of the Universe - in fact, random chance was not sufficient to explain random chance; the pot could not hold itself." (Robert A Heinlein, "Stranger in a Strange Land", 1961)
“The world of science lives fairly comfortably with paradox. We know that light is a wave and also that light is a particle. The discoveries made in the infinitely small world of particle physics indicate randomness and chance, and I do not find it any more difficult to live with the paradox of a universe of randomness and chance and a universe of pattern and purpose than I do with light as a wave and light as a particle. Living with contradiction is nothing new to the human being.” (Madeline L'Engle, “Two-Part Invention: The Story of a Marriage”, 1988)
"Often, we use the word random loosely to describe something that is disordered, irregular, patternless, or unpredictable. We link it with chance, probability, luck, and coincidence. However, when we examine what we mean by random in various contexts, ambiguities and uncertainties inevitably arise. Tackling the subtleties of randomness allows us to go to the root of what we can understand of the universe we inhabit and helps us to define the limits of what we can know with certainty." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)
"Randomness, chaos, uncertainty, and chance are all a part of our lives. They reside at the ill-defined boundaries between what we know, what we can know, and what is beyond our knowing. They make life interesting." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)
"We use mathematics and statistics to describe the diverse realms of randomness. From these descriptions, we attempt to glean insights into the workings of chance and to search for hidden causes. With such tools in hand, we seek patterns and relationships and propose predictions that help us make sense of the world." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)
"The subject of probability begins by assuming that some mechanism of uncertainty is at work giving rise to what is called randomness, but it is not necessary to distinguish between chance that occurs because of some hidden order that may exist and chance that is the result of blind lawlessness. This mechanism, figuratively speaking, churns out a succession of events, each individually unpredictable, or it conspires to produce an unforeseeable outcome each time a large ensemble of possibilities is sampled." (Edward Beltrami, "Chaos and Order in Mathematics and Life", 1999)
"Regression toward the mean. That is, in any series of random events an extraordinary event is most likely to be followed, due purely to chance, by a more ordinary one." (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)
"No matter what the laws of chance might tell us, we search for patterns among random events wherever they might occur - not only in the stock market but even in interpreting sporting phenomena." (Burton G Malkiel, "A Random Walk Down Wall Street: The Time-Tested Strategy For Successful Investing", 2011)
No comments:
Post a Comment