15 May 2021

On Axioms (1909-1924)

"Pure mathematics is a collection of hypothetical, deductive theories, each consisting of a definite system of primitive, undefined, concepts or symbols and primitive, unproved, but self-consistent assumptions (commonly called axioms) together with their logically deducible consequences following by rigidly deductive processes without appeal to intuition." (Graham D Fitch, "The Fourth Dimension simply Explained", 1910)

"The ordinary mathematical treatment of any applied science substitutes exact axioms for the approximate results of experience, and deduces from these axioms the rigid mathematical conclusions. In applying this method it must not be forgotten that the mathematical developments transcending the limits of exactness of the science are of no practical value. It follows that a large portion of abstract mathematics remains without finding any practical application, the amount of mathematics that can be usefully employed in any science being in proportion to the degree of accuracy attained in the science. Thus, while the astronomer can put to use a wide range of mathematical theory, the chemist is only just beginning to apply the first derivative, i. e. the rate of change at which certain processes are going on; for second derivatives he does not seem to have found any use as yet." (Felix Klein, "Lectures on Mathematics", 1911)

"The mathematical laws presuppose a very complex elaboration. They are not known exclusively either a priori or a posteriori, but are a creation of the mind; and this creation is not an arbitrary one, but, owing to the mind’s resources, takes place with reference to experience and in view of it. Sometimes the mind starts with intuitions which it freely creates; sometimes, by a process of elimination, it gathers up the axioms it regards as most suitable for producing a harmonious development, one that is both simple and fertile. The mathematics is a voluntary and intelligent adaptation of thought to things, it represents the forms that will allow of qualitative diversity being surmounted, the moulds into which reality must enter in order to become as intelligible as possible." (Émile Boutroux, "Natural Law in Science and Philosophy", 1914)

"Every one knows there are mathematical axioms. Mathematicians have, from the days of Euclid, very wisely laid down the axioms or first principles on which they reason. And the effect which this appears to have had upon the stability and happy progress of this science, gives no small encouragement to attempt to lay the foundation of other sciences in a similar manner, as far as we are able." (William K Clifford et al, "Scottish Philosophy of Common Sense", 1915)

"As soon as science has emerged from its initial stages, theoretical advances are no longer achieved merely by a process of arrangement. Guided by empirical data, the investigator rather develops a system of thought which, in general, is built up logically from a small number of fundamental assumptions, the so-called axioms. We call such a system of thought a theory. The theory finds the justification for its existence in the fact that it correlates a large number of single observations, and it is just here that the 'truth' of the theory lies. " (Albert Einstein: "Relativity: The Special and General Theory", 1916)

"Anything at all that can be the object of scientific thought becomes dependent on the axiomatic method, and thereby indirectly on mathematics, as soon as it is ripe for the formation of a theory. By pushing ahead to ever deeper layers of axioms [...] we become ever more conscious of the unity of our knowledge. In the sign of the axiomatic method, mathematics is summoned to a leading role in science." (David Hilbert, "Axiomatisches Denken", 1917)

"Since the examination of consistency is a task that cannot be avoided, it appears necessary to axiomatize logic itself and to prove that number theory and set theory are only parts of logic. This method was prepared long ago (not least by Frege’s profound investigations); it has been most successfully explained by the acute mathematician and logician Russell. One could regard the completion of this magnificent Russellian enterprise of the axiomatization of logic as the crowning achievement of the work of axiomatization as a whole." (David Hilbert, "Axiomatisches Denken" ["Axiomatic Thinking"], [address] 1917)

"The physical object cannot be determined by axioms and definitions. It is a thing of the real world, not an object of the logical world of mathematics. Offhand it looks as if the method of representing physical events by mathematical equations is the same as that of mathematics. Physics has developed the method of defining one magnitude in terms of others by relating them to more and more general magnitudes and by ultimately arriving at 'axioms', that is, the fundamental equations of physics. Yet what is obtained in this fashion is just a system of mathematical relations. What is lacking in such system is a statement regarding the significance of physics, the assertion that the system of equations is true for reality." (Hans Reichenbach, "The Theory of Relativity and A Priori Knowledge", 1920) 

"The axioms and provable theorems (i.e. the formulas that arise in this alternating game [namely formal deduction and the adjunction of new axioms]) are images of the thoughts that make up the usual procedure of traditional mathematics; but they are not themselves the truths in the absolute sense. Rather, the absolute truths are the insights (Einsichten) that my proof theory furnishes into the provability and the consistency of these formal systems." (David Hilbert; "Die logischen Grundlagen der Mathematik." Mathematische Annalen 88 (1), 1923)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Alexander von Humboldt - Collected Quotes

"Whatever relates to extent and quantity may be represented by geometrical figures. Statistical projections which speak to the senses w...