"The only possible way to conceive universal is by induction, since we come to know abstractions by induction. But unless we have sense experience, we cannot make inductions. Even though sense perception relates to particular things, scientific knowledge concerning such can only be constructed by the successive steps of sense perception, induction, and formulation of universals." (Aristotle, "Posterior Analytics", cca. 350 BC)
"The Syllogism consists of propositions, propositions consist of words, words are symbols of notions. Therefore if the notions themselves (which is the root of the matter) are confused and over-hastily abstracted from the facts, there can be no firmness in the superstructure. Our only hope therefore lies in a true induction." (Francis Bacon, "The New Organon", 1620)
"In experimental philosophy, propositions gathered from phenomena by induction should be considered either exactly or very nearly true notwithstanding any contrary hypotheses, until yet other phenomena make such propositions either more exact or liable to exceptions." (Isaac Newton, "The Principia: Mathematical Principles of Natural Philosophy", 1687)
"As in Mathematics, so in Natural Philosophy, the Investigation of difficult Things by the Method of Analysis, ought ever to precede the Method of Composition. This Analysis consists in making Experiments and Observations, and in drawing general Conclusions from them by Induction, and admitting of no Objections against the Conclusions but such as are taken from Experiments, or other certain Truths." (Sir Isaac Newton, "Opticks", 1704)
"It is often in our Power to obtain an Analogy where we cannot have an Induction." (David Hartley, "Observations on Man, His Frame, His Duty, and His Expectations", 1749)
"Especially when we investigate the general laws of Nature, induction has very great power; & there is scarcely any other method beside it for the discovery of these laws. By its assistance, even the ancient philosophers attributed to all bodies extension, figurability, mobility, & impenetrability; & to these properties, by the use of the same method of reasoning, most of the later philosophers add inertia & universal gravitation. Now, induction should take account of every single case that can possibly happen, before it can have the force of demonstration; such induction as this has no place in establishing the laws of Nature. But use is made of an induction of a less rigorous type ; in order that this kind of induction may be employed, it must be of such a nature that in all those cases particularly, which can be examined in a manner that is bound to lead to a definite conclusion as to whether or no the law in question is followed, in all of them the same result is arrived at; & that these cases are not merely a few. Moreover, in the other cases, if those which at first sight appeared to be contradictory, on further & more accurate investigation, can all of them be made to agree with the law; although, whether they can be made to agree in this way better than in any Other whatever, it is impossible to know directly anyhow. If such conditions obtain, then it must be considered that the induction is adapted to establishing the law." (Roger J Boscovich, "De Lege Continuitatis" ["On the law of continuity"], 1754)
"A discovery in mathematics, or a successful induction of facts, when once completed, cannot be too soon given to the world. But […] an hypothesis is a work of fancy, useless in science, and fit only for the amusement of a vacant hour." (Henry Brougham, Edinburgh Review 1, 1803)
"The most important questions of life are, for the most part, really only problems of probability. Strictly speaking one may even say that nearly all our knowledge is problematical; and in the small number of things which we are able to know with certainty, even in the mathematical sciences themselves, induction and analogy, the principal means for discovering truth, are based on probabilities, so that the entire system of human knowledge is connected with this theory." (Pierre-Simon Laplace, "Theorie Analytique des Probabilités", 1812)
"Analysis and natural philosophy owe their most important discoveries to this fruitful means, which is called induction. Newton was indebted to it for his theorem of the binomial and the principle of universal gravity." (Pierre-Simon Laplace, "Philosophical Essay on Probabilities”, 1814)
"Induction, analogy, hypotheses founded upon facts and rectified continually by new observations, a happy tact given by nature and strengthened by numerous comparisons of its indications with experience, such are the principal means for arriving at truth." (Pierre-Simon Laplace, "A Philosophical Essay on Probabilities", 1814)
"One may even say, strictly speaking, that almost all our knowledge is only probable; and in the small number of things that we are able to know with certainty, in the mathematical sciences themselves, the principal means of arriving at the truth - induction and analogy - are based on probabilities, so that the whole system of human knowledge is tied up with the theory set out in this essay." (Pierre-Simon Laplace, "Philosophical Essay on Probabilities", 1814)
"It is characteristic of higher arithmetic that many of its most beautiful theorems can be discovered by induction with the greatest of ease but have proofs that lie anywhere but near at hand and are often found only after many fruitless investigations with the aid of deep analysis and lucky combinations." (Carl Friedrich Gauss, 1817)
"Such is the tendency of the human mind to speculation, that on the least idea of an analogy between a few phenomena, it leaps forward, as it were, to a cause or law, to the temporary neglect of all the rest; so that, in fact, almost all our principal inductions must be regarded as a series of ascents and descents, and of conclusions from a few cases, verified by trial on many." (Sir John Herschel, "A Preliminary Discourse on the Study of Natural Philosophy" , 1830)
"We have here spoken of the prediction of facts of the same kind as those from which our rule was collected. But the evidence in favour of our induction is of a much higher and more forcible character when it enables us to explain and determine cases of a kind different from those which were contemplated in the formation of our hypothesis. The instances in which this has occurred, indeed, impress us with a conviction that the truth of our hypothesis is certain. No accident could give rise to such an extraordinary coincidence. No false supposition could, after being adjusted to one class of phenomena, so exactly represent a different class, when the agreement was unforeseen and contemplated. That rules springing from remote and unconnected quarters should thus leap to the same point, can only arise from that being where truth resides." (William Whewell, "The Philosophy of the Inductive Sciences" Vol. 2, 1840)
"There is in every step of an arithmetical or algebraical calculation a real induction, a real inference from facts to facts, and what disguises the induction is simply its comprehensive nature, and the consequent extreme generality of its language." (John S Mill, "A System of Logic, Ratiocinative and Inductive", 1843)
"The Higher Arithmetic presents us with an inexhaustible storehouse of interesting truths - of truths, too, which are not isolated but stand in the closest relation to one another, and between which, with each successive advance of the science, we continually discover new and sometimes wholly unexpected points of contact. A great part of the theories of Arithmetic derive an additional charm from the peculiarity that we easily arrive by induction at important propositions which have the stamp of simplicity upon them but the demonstration of which lies so deep as not to be discovered until after many fruitless efforts; and even then it is obtained by some tedious and artificial process while the simpler methods of proof long remain hidden from us." (Carl F Gauss, [introduction to Gotthold Eisenstein’s "Mathematische Abhandlungen"] 1847)