26 May 2022

On Experiments (1800-1849)

"We should scarcely be excused in concluding this essay without calling the reader's attention to the beneficent and wise laws established by the author of nature to provide for the various exigencies of the sublunary creation, and to make the several parts dependent upon each other, so as to form one well-regulated system or whole." (John Dalton, "Experiments and Observations to Determine whether the Quantity of Rain and Dew is Equal to the Quantity of Water carried off by the Rivers and Raised by Evaporation", Memoirs Manchester Literary and Philosophical Society, 1803)

"The foundations of chemical philosophy are observation, experiment, and analogy. By observation, facts are distinctly and minutely impressed on the mind. By analogy, similar facts are connected. By experiment, new facts are discovered; and, in the progression of knowledge, observation, guided by analogy, lends to experiment, and analogy confirmed by experiment, becomes scientific truth." (Sir Humphry Davy, "Elements of Chemical Philosophy" Vol. 4, 1812)

"By observation, facts are distinctly and minutely impressed on the mind. By analogy, similar facts are connected. By experiment, new facts are discovered [...]" (Sir Humphry Davy, "Elements of Chemical Philosophy" Vol. 4, 1812)

"The substitution of analogy for fact is the bane of chemical philosophy; the legitimate use of analogy is to connect facts together and to guide to new experiments." (Sir Humphry Davy, "Journal of Science and the Arts", 1816)

"The effects of heat are subject to constant laws which cannot be discovered without the aid of mathematical analysis. The object of the theory is to demonstrate these laws; it reduces all physical researches on the propagation of heat, to problems of the integral calculus, whose elements are given by experiment. No subject has more extensive relations with the progress of industry and the natural sciences; for the action of heat is always present, it influences the processes of the arts, and occurs in all the phenomena of the universe." (Jean-Baptiste-Joseph Fourier, "The Analytical Theory of Heat", 1822)

"[Precision] is the very soul of science; and its attainment afford the only criterion, or at least the best, of the truth of theories, and the correctness of experiments." (John F W Herschel, "A Preliminary Discourse on the Study of Natural Philosophy", 1830)

"The domain of physics is no proper field for mathematical pastimes. The best security would be in giving a geometrical training to physicists, who need not then have recourse to mathematicians, whose tendency is to despise experimental science. By this method will that union between the abstract and the concrete be effected which will perfect the uses of mathematical, while extending the positive value of physical science. Meantime, the uses of analysis in physics is clear enough. Without it we should have no precision, and no co-ordination; and what account could we give of our study of heat, weight, light, etc.? We should have merely series of unconnected facts, in which we could foresee nothing but by constant recourse to experiment; whereas, they now have a character of rationality which fits them for purposes of prevision." (Auguste Comte, "The Positive Philosophy", 1830)

"The loveliest theories are being overthrown by these damned experiments; it's no fun being a chemist anymore." (Justus von Liebig, [letter to Berzelius] 1834)

"Experimental science hardly ever affords us more than approximations to truth; and whenever many agents are concerned we are in great danger of being mistaken." (Sir Humphry Davy, cca. 1836)

"[…] in order that the facts obtained by observation and experiment may be capable of being used in furtherance of our exact and solid knowledge, they must be apprehended and analysed according to some Conception which, applied for this purpose, gives distinct and definite results, such as can be steadily taken hold of and reasoned from […]" (William Whewell, "The Philosophy of the Inductive Sciences Founded Upon their History" Vol. 2, 1840)

"Every theorem in geometry is a law of external nature, and might have been ascertained by generalizing from observation and experiment, which in this case resolve themselves into comparisons and measurements. But it was found practicable, and being practicable was desirable, to deduce these truths by ratiocination from a small number of general laws of nature, the certainty and universality of which was obvious to the most careless observer, and which compose the first principles and ultimate premises of the science." (John S Mill, "System of Logic", 1843)

"The hypothesis, by suggesting observations and experiments, puts us upon the road to that independent evidence if it be really attainable; and till it be attained, the hypothesis ought not to count for more than a suspicion." (John S Mill, "A System of Logic, Ratiocinative and Inductive", 1843)

"The framing of hypotheses is, for the enquirer after truth, not the end, but the beginning of his work. Each of his systems is invented, not that he may admire it and follow it into all its consistent consequences, but that he may make it the occasion of a course of active experiment and observation. And if the results of this process contradict his fundamental assumptions, however ingenious, however symmetrical, however elegant his system may be, he rejects it without hesitation. He allows no natural yearning for the offspring of his own mind to draw him aside from the higher duty of loyalty to his sovereign, Truth, to her he not only gives his affections and his wishes, but strenuous labour and scrupulous minuteness of attention." (William Whewell, "Philosophy of the Inductive Sciences" Vol. 2, 1847)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Douglas T Ross - Collected Quotes

"Automatic design has the computer do too much and the human do too little, whereas automatic programming has the human do too much and...