26 May 2022

On Experiments (1950-1959)

"An experiment is a question which man asks of nature; one result of the observation is an answer which nature yields to man." (Ferdinand Gonseth, "The Primeval Atom", 1950)

"The first thing to realize about physics […] is its extraordinary indirectness. […] For physics is not about the real world, it is about 'abstractions' from the real world, and this is what makes it so scientific. […] Theoretical physics runs merrily along with these unreal abstractions, but its conclusions are checked, at every possible point, by experiments." (Anthony Standen, "Science is a Sacred Cow", 1950)

"The hypothesis is the principal intellectual instrument in research. Its function is to indicate new experiments and observations and it therefore sometimes leads to discoveries even when not correct itself. We must resist the temptation to become too attached to our hypothesis, and strive to judge it objectively and modify it or discard it as soon as contrary evidence is brought to light. Vigilance is needed to prevent our observations and interpretations being biased in favor of the hypothesis. Suppositions can be used without being believed." (William I B Beveridge, "The Art of Scientific Investigation", 1950)

"[…] no one believes an hypothesis except its originator but everyone believes an experiment except the experimenter." (William I B Beveridge, "The Art of Scientific Investigation", 1950)

"An experiment is a question which man asks of nature; one result of the observation is an answer which nature yields to man." (Ferdinand Gonseth, "The Primeval Atom", 1950)

"The first thing to realize about physics […] is its extraordinary indirectness. […] For physics is not about the real world, it is about 'abstractions' from the real world, and this is what makes it so scientific. […] Theoretical physics runs merrily along with these unreal abstractions, but its conclusions are checked, at every possible point, by experiments." (Anthony Standen, "Science is a Sacred Cow", 1950)

"The hypothesis is the principal intellectual instrument in research. Its function is to indicate new experiments and observations and it therefore sometimes leads to discoveries even when not correct itself. We must resist the temptation to become too attached to our hypothesis, and strive to judge it objectively and modify it or discard it as soon as contrary evidence is brought to light. Vigilance is needed to prevent our observations and interpretations being biased in favor of the hypothesis. Suppositions can be used without being believed." (William I B Beveridge, "The Art of Scientific Investigation", 1950)

"Common sense […] may be thought of as a series of concepts and conceptual schemes which have proved highly satisfactory for the practical uses of mankind. Some of those concepts and conceptual schemes were carried over into science with only a little pruning and whittling and for a long time proved useful. As the recent revolutions in physics indicate, however, many errors can be made by failure to examine carefully just how common sense ideas should be defined in terms of what the experimenter plans to do." (James B Conant, "Science and Common Sense", 1951)

"Mathematical models for empirical phenomena aid the development of a science when a sufficient body of quantitative information has been accumulated. This accumulation can be used to point the direction in which models should be constructed and to test the adequacy of such models in their interim states. Models, in turn, frequently are useful in organizing and interpreting experimental data and in suggesting new directions for experimental research." (Robert R. Bush & Frederick Mosteller, "A Mathematical Model for Simple Learning", Psychological Review 58, 1951)

"Science is an interconnected series of concepts and schemes that have developed as a result of experimentation and observation and are fruitful of further experimentation and observation." (James B Conant, "Science and Common Sense", 1951)

"Being built on concepts, hypotheses, and experiments, laws are no more accurate or trustworthy than the wording of the definitions and the accuracy and extent of the supporting experiments." (Gerald Holton, "Introduction to Concepts and Theories in Physical Science", 1952)

"The older physicist believed in Nature and thought of himself as making experiments to see what She was like. She was there whether he could observe her or not. But the modern physicist thinks first of all of what he observes in his experiments and is not interested in anything that he cannot possibly observe. He looks for relations between his observations and ignores everything else. But he still expresses his results as though they were discoveries of the essence of Nature, because he is so used to this way of speaking that he does not realise that his discoveries no longer conform to it. When they are expressed as the characteristics of a world existing outside us and independently of us, which causes our experience by its impact on our sense organs, these discoveries require such a world to have contradictory properties. Hence, by retaining this form of expression, the physicist finds himself presenting his perfectly rational achievements as though they were nonsensical." (Herbert Dingle, "The Scientific Adventure", British Journal for the Philosophy of Science, 1952)

"All great discoveries in experimental physics have been due to the intuition of men who made free use of models, which were for them not products of the imagination, but representatives of real things." (Max Born, "Physical Reality", Philosophical Quarterly, Vol. 3, No. 11,1953)

"[…] if the aim of physical theories is to explain experimental laws, theoretical physics is not an autonomous science; it is subordinate to metaphysics." (Pierre-Maurice-Marie Duhem,"The Aim and Structure of Physical Theory", 1954)

"Science cannot be based on dogma or authority of any kind, nor on any institution or revelation, unless indeed it be of the Book of Nature that lies open before our eyes. We need not dwell on the processes of acquiring knowledge by observation, experiment, and inductive and deductive reasoning. The study of scientific method both in theory and practice is of great importance. It is inherent in the philosophy that the record may be imperfect and the conceptions erroneous; the potential fallibility of our science is not only acknowledged but also insisted upon." (Sir Robert Robinson, "Science and the Scientist", Nature Vol. 176 (4479), 1955)

"That mathematics is a handmaiden of science is a commonplace; but it is less well understood that experiments stimulate mathematical imagination, aid in the formulation of concepts and shape the direction and emphasis of mathematical studies. One of the most remarkable features of the relationship is the successful use of physical models and experiments to solve problems arising in mathematics. In some cases a physical experiment is the only means of determining whether a solution to a specific problem exists; once the existence of a solution has been demonstrated, it may then be possible to complete the mathematical analysis, even to move beyond the conclusions furnished by the model-a sort of boot-strap procedure. It is interesting to point out that what counts in this action and reaction is as much the 'physical way of thinking', the turning over in imagination of physical events, as the actual doing of the experiment." (James R Newman, "The World of Mathematics" Vol. II, 1956)

"The predictions of physical theories for the most part concern situations where initial conditions can be precisely specified. If such initial conditions are not found in nature, they can be arranged. Such arrangements are considerably easier to realize with inanimate than with animate matter, because the properties of animate matter are much more sensitive to being tampered with than inanimate matter. In particular, living tissue in vitro may behave quite differently than in situ. Controlled biological experiments are, of course, possible, but they are more difficult and their scope is more limited than that of physical experiments. For this reason, biology has had to depend to a greater extent than physics on theories of larger speculative scope, in which reasoning by imaginative analogy plays a more important role." (Anatol Rapoport, "The Search for Simplicity", 1956)

"[...] if we can never actually determine more than one of the two properties (possession of a definite position and of a definite momentum), and if when one is determined we-can make no assertion at all about the other property for the same moment, so far as our experiment goes, then we are not justified in concluding that the 'thing' under examination can actually be described as a particle in the usual sense of the term." (Max Born, "Atomic Physics", 1957)

"It is clear to all that the animal organism is a highly complex system consisting of an almost infinite series of parts connected both with one another and, as a total complex, with the surrounding world, with which it is in a state of equilibrium." (Ivan P Pavlov, "Experimental psychology, and other essays", 1957)

"The well-known virtue of the experimental method is that it brings situational variables under tight control. It thus permits rigorous tests of hypotheses and confidential statements about causation. The correlational method, for its part, can study what man has not learned to control. Nature has been experimenting since the beginning of time, with a boldness and complexity far beyond the resources of science. The correlator’s mission is to observe and organize the data of nature’s experiments." (Lee J Cronbach, "The Two Disciplines of Scientific Psychology", The American Psychologist Vol. 12, 1957)

"A satisfactory prediction of the sequential properties of learning data from a single experiment is by no means a final test of a model. Numerous other criteria - and some more demanding - can be specified. For example, a model with specific numerical parameter values should be invariant to changes in independent variables that explicitly enter in the model." (Robert R Bush & Frederick Mosteller, "A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"It is perhaps possible to distinguish two different aspects of numeracy […]. On the one hand is an understanding of the scientific approach to the study of phenomena - observation, hypothesis, experiment, verification. On the other hand, there is the need in the modern world to think quantitatively, to realise how far our problems are problems of degree even when they appear as problems of kind." (Sir Geoffrey Crowther, "A Report of the Central Advisory Committee for Education", 1959)

"A satisfactory prediction of the sequential properties of learning data from a single experiment is by no means a final test of a model. Numerous other criteria - and some more demanding - can be specified. For example, a model with specific numerical parameter values should be invariant to changes in independent variables that explicitly enter in the model." (Robert R Bush & Frederick Mosteller,"A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"It is perhaps possible to distinguish two different aspects of numeracy […]. On the one hand is an understanding of the scientific approach to the study of phenomena - observation, hypothesis, experiment, verification. On the other hand, there is the need in the modern world to think quantitatively, to realise how far our problems are problems of degree even when they appear as problems of kind." (Sir Geoffrey Crowther, "A Report of the Central Advisory Committee for Education", 1959)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...