26 May 2022

On Experiments (1870-1879)

"As in the experimental sciences, truth cannot be distinguished from error as long as firm principles have not been established through the rigorous observation of facts." (Louis Pasteur, "Étude sur la maladie des vers à soie", 1870)

"[Mathematics] is that [subject] which knows nothing of observation, nothing of experiment, nothing of induction, nothing of causation." (Thomas H Huxley, "Lay Sermons, Addresses and Reviews", 1870)

"Riemann has shewn that as there are different kinds of lines and surfaces, so there are different kinds of space of three dimensions; and that we can only find out by experience to which of these kinds the space in which we live belongs. In particular, the axioms of plane geometry are true within the limits of experiment on the surface of a sheet of paper, and yet we know that the sheet is really covered with a number of small ridges and furrows, upon which (the total curvature not being zero) these axioms are not true. Similarly, he says although the axioms of solid geometry are true within the limits of experiment for finite portions of our space, yet we have no reason to conclude that they are true for very small portions; and if any help can be got thereby for the explanation of physical phenomena, we may have reason to conclude that they are not true for very small portions of space." (William K Clifford, "On the Space Theory of Matter", [paper delivered before the Cambridge Philosophical Society, 1870)

"So intimate is the union between Mathematics and Physics that probably by far the larger part of the accessions to our mathematical knowledge have been obtained by the efforts of mathematicians to solve the problems set to them by experiment, and to create for each successive class phenomena a new calculus or a new geometry, as the case might be, which might prove not wholly inadequate to the subtlety of nature. Sometimes the mathematician has been before the physicist, and it has happened that when some great and new question has occurred to the experimentalist or the observer, he has found in the armory of the mathematician the weapons which he needed ready made to his hand. But much oftener, the questions proposed by the physicist have transcended the utmost powers of the mathematics of the time, and a fresh mathematical creation has been needed to supply the logical instrument requisite to interpret the new enigma." (Henry J S Smith, Nature, Volume 8, 1873)

"The scientific value of a theory of this kind, in which we make so many assumptions, and introduce so many adjustable constants, cannot be estimated merely by its numerical agreement with certain sets of experiments. If it has any value it is because it enables us to form a mental image of what takes place in a piece of iron during magnetization." (James C Maxwell,"Treatise on Electricity and Magnetism" Vol. II, 1873)

"A law of nature, however, is not a mere logical conception that we have adopted as a kind of memoria technical to enable us to more readily remember facts. We of the present day have already sufficient insight to know that the laws of nature are not things which we can evolve by any speculative method. On the contrary, we have to discover them in the facts; we have to test them by repeated observation or experiment, in constantly new cases, under ever-varying circumstances; and in proportion only as they hold good under a constantly increasing change of conditions, in a constantly increasing number of cases with greater delicacy in the means of observation, does our confidence in their trustworthiness rise." (Hermann von Helmholtz, "Popular Lectures on Scientific Subjects", 1873)

"It [geometry] escapes the tedious and troublesome task of collecting experimental facts, which is the province of the natural sciences in the strict sense of the word; the sole form of its scientific method is deduction." (Hermann von Helmholtz, "Popular Lectures on Scientific Subjects", 1873)

"So intimate is the union between Mathematics and Physics that probably by far the larger part of the accessions to our mathematical knowledge have been obtained by the efforts of mathematicians to solve the problems set to them by experiment, and to create for each successive class phenomena a new calculus or a new geometry, as the case might be, which might prove not wholly inadequate to the subtlety of nature. Sometimes the mathematician has been before the physicist, and it has happened that when some great and new question has occurred to the experimentalist or the observer, he has found in the armory of the mathematician the weapons which he needed ready made to his hand. But much oftener, the questions proposed by the physicist have transcended the utmost powers of the mathematics of the time, and a fresh mathematical creation has been needed to supply the logical instrument requisite to interpret the new enigma." (Henry J S Smith, Nature, Volume 8, 1873)

"The scientific value of a theory of this kind, in which we make so many assumptions, and introduce so many adjustable constants, cannot be estimated merely by its numerical agreement with certain sets of experiments. If it has any value it is because it enables us to form a mental image of what takes place in a piece of iron during magnetization." (James C Maxwell, "Treatise on Electricity and Magnetism" Vol. II, 1873)

"Mathematics is a science of Observation, dealing with reals, precisely as all other sciences deal with reals. It would be easy to show that its Method is the same: that, like other sciences, having observed or discovered properties, which it classifies, generalises, co-ordinates and subordinates, it proceeds to extend discoveries by means of Hypothesis, Induction, Experiment and Deduction." (George H Lewes, "Problems of Life and Mind: The Method of Science and its Application", 1874)

"Hence, even in the domain of natural science the aid of the experimental method becomes indispensable whenever the problem set is the analysis of transient and impermanent phenomena, and not merely the observation of persistent and relatively constant objects." (Wilhelm Wundt, "Principles of Physiological Psychology", 1874)

"It is surprising to learn the number of causes of error which enter into the simplest experiment, when we strive to attain rigid accuracy." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"Mathematics is a science of Observation, dealing with reals, precisely as all other sciences deal with reals. It would be easy to show that its Method is the same: that, like other sciences, having observed or discovered properties, which it classifies, generalises, co-ordinates and subordinates, it proceeds to extend discoveries by means of Hypothesis, Induction, Experiment and Deduction." (George H Lewes, "Problems of Life and Mind: The Method of Science and its Application", 1874)

"Summing up, then, it would seem as if the mind of the great discoverer must combine contradictory attributes. He must be fertile in theories and hypotheses, and yet full of facts and precise results of experience. He must entertain the feeblest analogies, and the merest guesses at truth, and yet he must hold them as worthless till they are verified in experiment. When there are any grounds of probability he must hold tenaciously to an old opinion, and yet he must be prepared at any moment to relinquish it when a clearly contradictory fact is encountered." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"When we merely note and record the phenomena which occur around us in the ordinary course of nature we are said to observe. When we change the course of nature by the intervention of our will and muscular powers, and thus produce unusual combinations and conditions of phenomena, we are said to experiment. […] an experiment differs from a mere observation in the fact that we more or less influence the character of the events which we observe." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"A metaphysical conclusion is either a false conclusion or a concealed experimental conclusion. (Hermann von Helmholtz, "On Thought in Medicine", 1877)

"A discoverer is a tester of scientific ideas; he must not only be able to imagine likely hypotheses, and to select suitable ones for investigation, but, as hypotheses may be true or untrue, he must also be competent to invent appropriate experiments for testing them, and to devise the requisite apparatus and arrangements." (George Gore, "The Art of Scientific Discovery", 1878)

"If we consider further the manifold relations of this mathematical theory to civil uses and the technical arts, we shall recognize completely the extent of its applications. It is evident that it includes an entire series of distinct phenomena, and that the study of it cannot be omitted without losing a notable part of the science of nature.   The principles of the theory are derived, as are those of rational mechanics, from a very small number of primary facts, the causes of which are not considered by geometers, but which they admit as the results of common observations confirmed by all experiment." (Joseph Fourier, "The Analytical Theory of Heat", 1878)

"It is very different to make a practical system and to introduce it. A few experiments in the laboratory would prove the practicability of system long before it could be brought into general use." (Thomas Edison, 1879)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...