"Like pictures, images seem to depict information about interval spatial extents. The scanning experiments support the claim that portions of images depict corresponding portions of the represented objects, and that the spatial relations between portions of the image index the spatial relations between the corresponding portions of the imaged objects." (Stephen Kosslyn," Image and Mind", 1980)
"[…] there is an external world which can in principle be exhaustively described in scientific language. The scientist, as both observer and language-user, can capture the external facts of the world in propositions that are true if they correspond to the facts and false if they do not. Science is ideally a linguistic system in which true propositions are in one-to-one relation to facts, including facts that are not directly observed because they involve hidden entities or properties, or past events or far distant events. These hidden events are described in theories, and theories can be inferred from observation, that is, the hidden explanatory mechanism of the world can be discovered from what is open to observation. Man as scientist is regarded as standing apart from the world and able to experiment and theorize about it objectively and dispassionately." (Mary B Hesse, "Revolutions and Reconstructions in the Philosophy of Science", 1980)
"The purpose of an experiment is to answer questions. The truth of this seems so obvious, that it would not be worth emphasizing were it not for the fact that the results of many experiments are interpreted and presented with little or no reference to the questions that were asked in the first place." (Thomas M Little, "Interpretation and presentation of results", Hortscience 16, 1981)
"In all scientific fields, theory is frequently more important than experimental data. Scientists are generally reluctant to accept the existence of a phenomenon when they do not know how to explain it. On the other hand, they will often accept a theory that is especially plausible before there exists any data to support it." (Richard Morris, 1983)
"[…] nature at the quantum level is not a machine that goes its inexorable way. Instead what answer we get depends on the question we put, the experiment we arrange, the registering device we choose. We are inescapably involved in bringing about that which appears to be happening." (John A Wheeler & Wojciech H Zurek, "Quantum Theory and Measurement", 1983)
"Theoretical scientists, inching away from the safe and known, skirting the point of no return, confront nature with a free invention of the intellect. They strip the discovery down and wire it into place in the form of mathematical models or other abstractions that define the perceived relation exactly. The now-naked idea is scrutinized with as much coldness and outward lack of pity as the naturally warm human heart can muster. They try to put it to use, devising experiments or field observations to test its claims. By the rules of scientific procedure it is then either discarded or temporarily sustained. Either way, the central theory encompassing it grows. If the abstractions survive they generate new knowledge from which further exploratory trips of the mind can be planned. Through the repeated alternation between flights of the imagination and the accretion of hard data, a mutual agreement on the workings of the world is written, in the form of natural law." (Edward O Wilson, "Biophilia", 1984)
"Mathematics is not a deductive science - that's a cliché. When you try to prove a theorem, you don't just list the hypotheses, and then start to reason. What you do is trial and error, experimentation, guesswork. You want to find out what the facts are, and what you do is in that respect similar to what a laboratory technician does. Possibly philosophers would look on us mathematicians the same way as we look on the technicians, if they dared." (Paul R Halmos, "I Want to be a Mathematician: An Automathography", 1985)
"The only touchstone for empirical truth is experiment and observation." (Heinz Pagels, "Perfect Symmetry: The Search for the Beginning of Time", 1985)
"A mechanistic model has the following advantages: 1. It contributes to our scientific understanding of the phenomenon under study. 2. It usually provides a better basis for extrapolation (at least to conditions worthy of further experimental investigation if not through the entire range of all input variables). 3. It tends to be parsimonious (i. e, frugal) in the use of parameters and to provide better estimates of the response." (George E P Box, "Empirical Model-Building and Response Surfaces", 1987)
"Although science literally means ‘knowledge’, the scientific attitude is concerned much more with rational perception through the mind and with testing such perceptions against actual fact, in the form of experiments and observations." (David Bohm & F David Peat, "Science, Order, and Creativity", 1987)
"Any physical theory is always provisional, in the sense that it is only a hypothesis: you can never prove it. No matter how many times the results of experiments agree with some theory, you can never be sure that the next time the result will not contradict the theory." (Stephen Hawking, "A Brief History of Time", 1988)
"A first analysis of experimental results should, I believe, invariably be conducted using flexible data analytical techniques - looking at graphs and simple statistics - that so far as possible allow the data to 'speak for themselves'. The unexpected phenomena that such a approach often uncovers can be of the greatest importance in shaping and sometimes redirecting the course of an ongoing investigation." (George Box, "Signal to Noise Ratios, Performance Criteria, and Transformations", Technometrics 30, 1988)
"The submission to observed or experimental data is the golden rule which dominates any scientific discipline. Any theory whatever, if it is not verified by empirical evidence, has no scientific value and should be rejected. This is true, for example, of the contemporary theories of general economic equilibrium." (Maurice Allais, "An Outline of My Main Contributions to Economic Science", [Noble lecture] 1988)
"As a practical matter, mathematics is a science of pattern and order. Its domain is not molecules or cells, but numbers, chance, form, algorithms, and change. As a science of abstract objects, mathematics relies on logic rather than observation as its standard of truth, yet employs observation, simulation, and even experimentation as a means of discovering truth." (National Research Council, "Everybody Counts", 1989)
"Neural computing is the study of cellular networks that have a natural property for storing experimental knowledge. Such systems bear a resemblance to the brain in the sense that knowledge is acquired through training rather than programming and is retained due to changes in node functions. The knowledge takes the form of stable states or cycles of states in the operation of the net. A central property of such nets is to recall these states or cycles in response to the presentation of cues." (Igor Aleksander & Helen Morton, "Neural computing architectures: the design of brain-like machines", 1989)
"Statistics is a tool. In experimental science you plan and carry out experiments, and then analyse and interpret the results. To do this you use statistical arguments and calculations. Like any other tool - an oscilloscope, for example, or a spectrometer, or even a humble spanner - you can use it delicately or clumsily, skillfully or ineptly. The more you know about it and understand how it works, the better you will be able to use it and the more useful it will be." (Roger Barlow, "Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences", 1989)
"Some methods, such as those governing the design of experiments or the statistical treatment of data, can be written down and studied. But many methods are learned only through personal experience and interactions with other scientists. Some are even harder to describe or teach. Many of the intangible influences on scientific discovery - curiosity, intuition, creativity - largely defy rational analysis, yet they are often the tools that scientists bring to their work." (Committee on the Conduct of Science, "On Being a Scientist", 1989)
No comments:
Post a Comment