26 May 2022

On Experiments (1990-1999)

"A meaningful physical discussion always requires an operational background. Either this is provided by an existing theory, or you have to give it yourself by the sufficiently explicit description of an experiment that can, at least in principle, be performed." (David Ruelle, "Chance and Chaos", 1991)

"Hard though the scientists of mental imagery try, they cannot get around the fact that the representations they deal with are like pictures. […] The methods have to assume, and the experiments continually corroborate, that having imagery is somehow like perceptual seeing, and that it is somehow like seeing pictures. […] The minimal reason for this assumption is that people do naturally talk of seeing pictures before their mind’s eye." (Eva T H Brann, "The World of Imagination", 1991)

"Quantum mechanics, like other physical theories, consists of a mathematical part, and an operational part that tells you how a certain piece of physical reality is described by the mathematics. Both the mathematical and the operational aspects of quantum mechanics are straightforward and involve no logical paradoxes. Furthermore, the agreement between theory and experiment is as good as one can hope for. Nevertheless, the new mechanics has given rise to many controversies, which involve its probabilistic aspect, the relation of its operational concepts with those of classical mechanics […]" (David Ruelle, "Chance and Chaos", 1991)

"Scientists use mathematics to build mental universes. They write down mathematical descriptions - models - that capture essential fragments of how they think the world behaves. Then they analyse their consequences. This is called 'theory'. They test their theories against observations: this is called 'experiment'. Depending on the result, they may modify the mathematical model and repeat the cycle until theory and experiment agree. Not that it's really that simple; but that's the general gist of it, the essence of the scientific method." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"A fundamental difference between religious and scientific thought is that the received beliefs in religion are ultimately based on revelations or pronouncements, usually by some long dead prophet or priest.[...] Dogma is interpreted by a caste of priests and is accepted by the multitude on faith or under duress. In contrast, the statements of science are derived from the data of observations and experiment, and from the manipulation of these data according to logical and often mathematical procedures." (John A Moore, "Science as a Way of Knowing: The Foundations of Modern Biology", 1993)

"Submission to the experimental data is the golden rule that dominates any scientific discipline." (Maurice Allais, [speech] 1993)

"Clearly, science is not simply a matter of observing facts. Every scientific theory also expresses a worldview. Philosophical preconceptions determine where facts are sought, how experiments are designed, and which conclusions are drawn from them." (Nancy R Pearcey & Charles B. Thaxton, "The Soul of Science: Christian Faith and Natural Philosophy", 1994)

"Clearly, science is not simply a matter of observing facts. Every scientific theory also expresses a worldview. Philosophical preconceptions determine where facts are sought, how experiments are designed, and which conclusions are drawn from them." (Nancy R Pearcey & Charles B. Thaxton, "The Soul of Science: Christian Faith and Natural Philosophy", 1994)

"The principle of science, the definition, almost, is the following: The test of all knowledge is experiment. Experiment is the sole judge of scientific ‘truth’." (Richard Feynman, "Six Easy Pieces", 1994)

"The sequence for the understanding of mathematics may be: intuition, trial, error, speculation, conjecture, proof. The mixture and the sequence of these events differ widely in different domains, but there is general agreement that the end product is rigorous proof – which we know and can recognize, without the formal advice of the logicians. […] Intuition is glorious, but the heaven of mathematics requires much more. Physics has provided mathematics with many fine suggestions and new initiatives, but mathematics does not need to copy the style of experimental physics. Mathematics rests on proof - and proof is eternal." (Saunders Mac Lane, "Reponses to …", Bulletin of the American Mathematical Society Vol. 30 (2), 1994)

"Having a scientific outlook means being willing to divest yourself of a pet hypothesis, whether it relates to easy self-help improvements, homeopathy, graphology, spontaneous generation, or any other concept, when the data produced by a carefully designed experiment contradict that hypothesis. Retaining a belief in a hypothesis that cannot be supported by data is the hallmark of both the pseudoscientist and the fanatic. Often the more deeply held the hypothesis, the more reactionary is the response to nonsupportive data." (Michael Zimmerman, "Science, Nonscience, and Nonsense: Approaching Environmental Literacy", 1995)

"Probability theory is an ideal tool for formalizing uncertainty in situations where class frequencies are known or where evidence is based on outcomes of a sufficiently long series of independent random experiments. Possibility theory, on the other hand, is ideal for formalizing incomplete information expressed in terms of fuzzy propositions." (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"Schematic diagrams are more abstract than pictorial drawings, showing symbolic elements and their interconnection to make clear the configuration and/or operation of a system." (Ernest O Doebelin, "Engineering experimentation: planning, execution, reporting", 1995)

"Some people derive satisfaction from accumulating data, whereas others are content to dream and leave experiments to colleagues. Still others flit from flower to flower rather than learning more and more about one situation. The difference in approach is a matter of temperament, and we all must understand our own strengths. All workers ultimately contribute to the matrix of facts, ideas, understandings, techniques, and visions that we know as science." (Arthur J Birch, "To See the Obvious", 1995)

"When Physicists speak of 'beauty' in their theories, they really mean that their theory possesses at least two essential features: 1. A unifying symmetry 2. The ability to explain vast amounts of experimental data with the most economical mathematical expressions." (Michio Kaku, "Hyperspace", 1995)

"Factoring big numbers is a strange kind of mathematics that closely resembles the experimental sciences, where nature has the last and definitive word. […] as with the experimental sciences, both rigorous and heuristic analyses can be valuable in understanding the subject and moving it forward. And, as with the experimental sciences, there is sometimes a tension between pure and applied practitioners." (Carl B Pomerance, "A Tale of Two Sieves", The Notices of the American Mathematical Society 43, 1996)

"Science focuses on the study of the natural world. It seeks to describe what exists. Focusing on problem finding, it studies and describes problems in its various domains. The humanities focus on understanding and discussing the human experience. In design, we focus on finding solutions and creating things and systems of value that do not yet exist.   The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"Science is distinguished not for asserting that nature is rational, but for constantly testing claims to that or any other affect by observation and experiment." (Timothy Ferris, "The Whole Shebang: A State-of-the Universe’s Report", 1996)

"The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"Trust is the core of human relationships, of gregariousness among men. Friendship, a puzzle to the syllogistic and critical mentality, is not based on experiments or tests of another person's qualities but on trust. It is not critical knowledge but a risk of the heart which initiates affection and preserves loyalty in our fellow men." (Abraham J Heschel, "Moral Grandeur and Spiritual Audacity: Essays", 1997)

"[...] the definitive property of good theory is predictiveness. Those theories endure that are precise in the predictions they make across many phenomena and whose predictions are easiest to test by observation and experiment." (Edward O Wilson, "Consilience: The Unity of Knowledge", 1998)

"The everyday usage of 'theory' is for an idea whose outcome is as yet undetermined, a conjecture, or for an idea contrary to evidence. But scientists use the word in exactly the opposite sense. [In science] 'theory' [...] refers only to a collection of hypotheses and predictions that is amenable to experimental test, preferably one that has been successfully tested. It has everything to do with the facts." (Tony Rothman & George Sudarshan, "Doubt and Certainty: The Celebrated Academy: Debates on Science, Mysticism, Reality, in General on the Knowable and Unknowable", 1998)

"The reason why a 'crude', experimental approach is not adequate for determining mathematical truth lies in the nature of what mathematics is and is intended to be. Though its roots lie in the physical world, mathematics is a precise and idealized discipline. The 'points', 'lines', 'planes', and other ideal constructs of mathematics have no exact counterpart in reality. What the mathematician does is to take a totally abstract, idealized view of the world, and reason with his abstractions in an entirely precise and rigorous fashion." (Keith Devlin, "Mathematics: The New Golden Age", 1998)

"A mathematician experiments, amasses information, makes a conjecture, finds out that it does not work, gets confused and then tries to recover. A good mathematician eventually does so – and proves a theorem." (Steven Krantz, "Conformal Mappings", American Scientist Vol. 87 (5), 1999)

"No matter how beautiful the whole model may be, no matter how naturally it all seems to hang together now, if it disagrees with experiment, then it is wrong." (John Gribbin,"Almost Everyone’s Guide to Science", 1999)

"Even the most elegant and beautiful physical theory may disappear without a trace if not confirmed by experiment, while, as a rule, a theorem, once proved, remains in mathematics forever." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"I have no idea whether the properties of the universe as we know it are fundamental or emergent, but I believe that the mere possibility of the latter should give the string theorists pause, for it would imply that more than one set of microscopic equations is consistent with experiment - so that we are blind to these equations until better experiments are designed - and also that the true nature of the microscopic equations is irrelevant to our world." (Robert B Laughlin, "Fractional quantization", Reviews of Modern Physics vol. 71 (4), [Nobel lecture] 1999)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Alexander von Humboldt - Collected Quotes

"Whatever relates to extent and quantity may be represented by geometrical figures. Statistical projections which speak to the senses w...