17 May 2022

On Language (1980-1989)

"[...] language is the medium through which new conceptual metaphors are created." (George Lakoff and Mark Johnson, "Metaphors We Live By", 1980)

 "Metaphor is for most people a device of the poetic imagination and the rhetorical flourish - a matter of extraordinary rather than ordinary language. Moreover, metaphor is typically viewed as characteristic of language alone, a matter of words rather than thought or action. For this reason, most people think they can get along perfectly well without metaphor. We have found, on the contrary, that metaphor is pervasive in everyday life, not just in language but in thought and action. Our ordinary conceptual system, in terms of which we both think and act, is fundamentally metaphorical in nature." (George Lakoff & Mark Johnson, "Metaphors we Live by", 1980)

"[…] there is an external world which can in principle be exhaustively described in scientific language. The scientist, as both observer and language-user, can capture the external facts of the world in propositions that are true if they correspond to the facts and false if they do not. Science is ideally a linguistic system in which true propositions are in one-to-one relation to facts, including facts that are not directly observed because they involve hidden entities or properties, or past events or far distant events. These hidden events are described in theories, and theories can be inferred from observation, that is, the hidden explanatory mechanism of the world can be discovered from what is open to observation. Man as scientist is regarded as standing apart from the world and able to experiment and theorize about it objectively and dispassionately." (Mary B Hesse, "Revolutions and Reconstructions in the Philosophy of Science", 1980)

"My suggestion is that at each state the proper order of operation of the mind requires an overall grasp of what is generally known, not only in formal logical, mathematical terms, but also intuitively, in images, feelings, poetic usage of language, etc." (David Bohm,"Wholeness and the Implicate Order Wholeness and the Implicate Order", 1980)

"New metaphors are capable of creating new understandings and, therefore, new realities. This should be obvious in the case of poetic metaphor, where language is the medium through which new conceptual metaphors are created." (George Lakoff and Mark Johnson, "Metaphors We Live By", 1980)

"The essence of metaphor is understanding and experiencing one kind of thing in terms of another. […] Metaphor is pervasive in everyday life, not just in language but in thought and action. Our ordinary conceptual system, in terms of which we both think and act, is fundamentally metaphorical in nature." (George Lakoff & Mark Johnson, "Metaphors We Live By", 1980)

"In the limit of idealization, all of mathematics can be regarded as the collection of grammatically correct potential texts in a formal language." (Yuri I Manin, "Mathematics and Physics", 1981)

"Language cannot be studied in isolation from the investigation of ‘rationality’. It cannot afford to neglect our everyday assumptions concerning the total behavior of a reasonable person. […] An integrational linguistics must recognize that human beings inhabit a communicational space which is not neatly compartmentalized into language and nonlanguage. […] It renounces in advance the possibility of setting up systems of forms and meanings which will ‘account for’ a central core of linguistic behavior irrespective of the situation and communicational purposes involved." (Roy Harris, "The Language Myth", 1981)

"The test of the intelligibility of any statement that overwhelms us with its air of profundity is its translatability into language that lacks the elevation and verve of the original statement but can pass muster as a simple and clear statement in ordinary, everyday speech. Most of what has been written about beauty will not survive this test. In the presence of many of the most eloquent statements about beauty, we are left speechless - speechless in the sense that we cannot find other words for expressing what we think or hope we understand." (Mortimer J Adler, Six Great Ideas, 1981)

"[…] mathematics is not just a symbolism, a set of conventions for the use of special, formal vocabularies, but is intimately connected with the structure of rational thought, with reasoning practices. [...] mathematics is not just a language, and of refusing the foundationalist move of trying to reduce mathematics to logic, instead seeing mathematics as providing rational frameworks for science, is to set science against a background of rational structures and rational methods which itself has a built-in dynamics. The rational framework of science is itself historically conditioned, for it changes with developments in mathematics." (Mary Tiles, "Bachelard: Science and Objectivity", 1984)

"[...] two programs can be thought of as strongly equivalent or as different realizations of the same algorithm or the same cognitive process if they can be represented by the same program in some theoretically specified virtual machine. A simple way of stating this is to say that we individuate cognitive processes in terms of their expression in the canonical language of this virtual machine. The formal structure of the virtual machine - or what I call its functional architecture - thus represents the theoretical definition of, for example, the right level of specificity (or level of aggregation) at which to view mental processes, the sort of functional resources the brain makes available - what operations are primitive, how memory is organized and accessed, what sequences are allowed, what limitations exist on the passing of arguments and on the capacities of various buffers, and so on. (Zenon W Pylyshyn, "Computation and cognition: Towards a foundation for cognitive science", 1984)

"I shall here present the view that numbers, even whole numbers, are words, parts of speech, and that mathematics is their grammar. Numbers were therefore invented by people in the same sense that language, both written and spoken, was invented. Grammar is also an invention. Words and numbers have no existence separate from the people who use them. Knowledge of mathematics is transmitted from one generation to another, and it changes in the same slow way that language changes. Continuity is provided by the process of oral or written transmission. (Carl Eckart, "Our Modern Idol: Mathematical Science", 1984)

"Language is the most formless means of expression. Its capacity to describe concepts without physical or visual references carries us into an advanced state of abstraction." (Ian Wilson, "Conceptual Art", 1984)

"Mathematics, being very different from the natural languages, has its corresponding patterns of thought. Learning these patterns is much more important than any particular result. […] They are learned by the constant use of the language and cannot be taught in any other fashion." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"One cannot ‘invent’ the structure of an object. The most we can do is to patiently bring it to the light of day, with humility - in making it known, it is ‘discovered’. If there is some sort of inventiveness in this work, and if it happens that we find ourselves the maker or indefatigable builder, we are in no sense ‘making’ or ’building’ these ‘structures’. They have not waited for us to find them in order to exist, exactly as they are! But it is in order to express, as faithfully as possible, the things that we have been detecting or discovering, the reticent structure which we are trying to grasp at, perhaps with a language no better than babbling. Thereby are we constantly driven to ‘invent’ the language most appropriate to express, with increasing refinement, the intimate structure of the mathematical object, and to ‘construct’ with the help of this language, bit by bit, those ‘theories’ which claim to give a fair account of what has been apprehended and seen. There is a continual coming and going, uninterrupted, between the apprehension of things, and the means of expressing them by a language in constant state improvement [...].The sole thing that constitutes the true inventiveness and imagination of the researcher is the quality of his attention as he listens to the voices of things." (Alexander Grothendieck, "Récoltes et semailles –Rélexions et témoignage sur un passé de mathématicien", 1985)

"The system always kicks back. - Systems get in the way - or, in slightly more elegant language: Systems tend to oppose their own proper functions. Systems tend to malfunction conspicuously just after their greatest triumph." (John Gall, "Systemantics: The underground text of systems lore", 1986)

"What makes people smarter than machines? They certainly are not quicker or more precise. Yet people are far better at perceiving objects in natural scenes and noting their relations, at understanding language and retrieving contextually appropriate information from memory, at making plans and carrying out contextually appropriate actions, and at a wide range of other natural cognitive tasks. People are also far better at learning to do these things more accurately and fluently through processing experience." (James L McClelland et al, "The appeal of parallel distributed processing", 1986)

"The whole idea of science is really to listen to nature, in her own language, as part of a continuing dialogue." (Frank Wilczek, "Longing for the Harmonies: Themes and Variations from Modern Physics", 1987)

"Mathematics is infinitely wide, while the language that describes it is finite. It follows from the pigeonhole principle that there exist distinct concepts that are referred to by the same name. Mathematics is also infinitely deep and sometimes entirely different concepts turn out to be intimately and profoundly related." (Doron Zeilberger, 1988)

"Fuzziness, then, is a concomitant of complexity. This implies that as the complexity of a task, or of a system for performing that task, exceeds a certain threshold, the system must necessarily become fuzzy in nature. Thus, with the rapid increase in the complexity of the information processing tasks which the computers are called upon to perform, we are reaching a point where computers will have to be designed for processing of information in fuzzy form. In fact, it is the capability to manipulate fuzzy concepts that distinguishes human intelligence from the machine intelligence of current generation computers. Without such capability we cannot build machines that can summarize written text, translate well from one natural language to another, or perform many other tasks that humans can do with ease because of their ability to manipulate fuzzy concepts." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"Modeling underlies our ability to think and imagine, to use signs and language, to communicate, to generalize from experience, to deal with the unexpected, and to make sense out of the raw bombardment of our sensations. It allows us to see patterns, to appreciate, predict, and manipulate processes and things, and to express meaning and purpose. In short, it is one of the most essential activities of the human mind. It is the foundation of what we call intelligent behavior and is a large part of what makes us human. We are, in a word, modelers: creatures that build and use models routinely, habitually – sometimes even compulsively – to face, understand, and interact with reality." (Jeff Rothenberg, "The Nature of Modeling. In: Artificial Intelligence, Simulation, and Modeling", 1989)

"To function in today's society, mathematical literacy - what the British call ‘numeracy' - is as essential as verbal literacy […] Numeracy requires more than just familiarity with numbers. To cope confidently with the demands of today's society, one must be able to grasp the implications of many mathematical concepts - for example, change, logic, and graphs - that permeate daily news and routine decisions - mathematical, scientific, and cultural - provide a common fabric of communication indispensable for modern civilized society. Mathematical literacy is especially crucial because mathematics is the language of science and technology." (National Research Council, "Everybody counts: A report to the nation on the future of mathematics education", 1989)

"What were the needs that led me to single out a few of these monsters, calling them fractals, to add some of their close or distant kin, and then to build a geometric language around them? The original need happens to have been purely utilitarian. That links exist between usefulness and beauty is, of course, well known. What we call the beauty of a flower attracts the insects that will gather and spread its pollen. Thus the beauty of a flower is useful - even indispensable - to the survival of its species. Similarly, it was the attractiveness of the fractal images that first brought them to the attention of many colleagues and then of a wide world." (Benoît B Mandelbrot, "Fractals and an Art for the Sake of Science", Leonardo [Supplemental Issue], 1989)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Douglas T Ross - Collected Quotes

"Automatic design has the computer do too much and the human do too little, whereas automatic programming has the human do too much and...