"Meantime, there is no doubt a certain crudeness in the use of a complex wave function. If it were unavoidable in principle, and not merely a facilitation of the calculation, this would mean that there are in principle two wave functions, which must be used together in order to obtain information on the state of the system. [...] Our inability to give more accurate information about this is intimately connected with the fact that, in the pair of equations [considered], we have before us only the substitute - extraordinarily convenient for the calculation, to be sure - for a real wave equation of probably the fourth order, which, however, I have not succeeded in forming for the non-conservative case."(Edwin Schrödinger, "Quantisation as a Problem of Proper Values" , Annalen der Physik Vol. 81 (4), 1926)
"Our bra and ket vectors are complex quantities, since they can be multiplied by complex numbers and are then of the same nature as before, but they are complex quantities of a special kind which cannot be split up into real and pure imaginary parts. The usual method of getting the real part of a complex quantity, by taking half the sum of the quantity itself and its conjugate, cannot be applied since a bra and a ket vector are of different natures and cannot be added." (Paul Dirac, "The Principles of Quantum Mechanics", 1930)
"In his desire to consider at any cost the propagation phenomenon of the waves ψ as something real in the classical sense of the word, the author had refused to acknowledge that the whole development of the theory increasingly tended to highlight the essential complex nature of the wave function." (Edwin Schrödinger. "Mémoires sur la mécanique ondulatoire", 1933) [author‘s comment in the French translation]
"One might think one could measure a complex dynamical variable by measuring separately its real and pure imaginary parts. But this would involve two measurements or two observations, which would be alright in classical mechanics, but would not do in quantum mechanics, where two observations in general interfere with one another - it is not in general permissible to consider that two observations can be made exactly simultaneously, and if they are made in quick succession the first will usually disturb the state of the system and introduce an indeterminacy that will affect the second." (Ernst C K Stückelberg, "Quantum Theory in Real Hilbert Space", 1960)
"It has been generally believed that only the complex numbers could legitimately be used as the ground field in discussing quantum-mechanical operators. Over the complex field, Frobenius' theorem is of course not valid; the only division algebra over the complex field is formed by the complex numbers themselves. However, Frobenius' theorem is relevant precisely because the appropriate ground field for much of quantum mechanics is real rather than complex." (Freeman Dyson, "The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics" , Journal of Mathematical Physics Vol. 3, 1962)
"Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the ‘three-fold way’ […] This three-fold classification sheds light on the physics of time reversal symmetry, and it already plays an important role in particle physics." (John C Baez, "Division Algebras and Quantum Theory", 2011)
"It is particularly helpful to use complex numbers to model periodic phenomena, especially to operate with phase differences. Mathematically, one can treat a physical quantity as being complex, but address physical meaning only to its real part. Another possibility is to treat the real and imaginary parts of a complex number as two related (real) physical quantities. In both cases, the structure of complex numbers is useful to make calculations more easily, but no physical meaning is actually attached to complex variables." (Ricardo Karam, "Why are complex numbers needed in quantum mechanics? Some answers for the introductory level", American Journal of Physics Vol. 88 (1), 2020)
"What is essentially different in quantum mechanics is that it deals with complex quantities (e.g. wave functions and quantum state vectors) of a special kind, which cannot be split up into pure real and imaginary parts that can be treated independently. Furthermore, physical meaning is not attached directly to the complex quantities themselves, but to some other operation that produces real numbers (e.g. the square modulus of the wave function or of the inner product between state vectors)." (Ricardo Karam, "Why are complex numbers needed in quantum mechanics? Some answers for the introductory level", American Journal of Physics Vol. 88 (1), 2020)
Quotes and Resources Related to Mathematics, (Mathematical) Sciences and Mathematicians
Subscribe to:
Post Comments (Atom)
On Chance: Definitions
"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...
No comments:
Post a Comment