16 February 2020

From Parts to Wholes (1970-1979)

"In self-organizing systems, on the other hand, ‘control’ of the organization is typically distributed over the whole of the system. All parts contribute evenly to the resulting arrangement." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"The systems approach to problems focuses on systems taken as a whole, not on their parts taken separately. Such an approach is concerned with total - system performance even when a change in only one or a few of its parts is contemplated because there are some properties of systems that can only be treated adequately from a holistic point of view. These properties derive from the relationship between parts of systems: how the parts interact and fit together." (Russell L Ackoff, "Towards a System of Systems Concepts", 1971)

"A system in one perspective is a subsystem in another. But the systems view always treats systems as integrated wholes of their subsidiary components and never as the mechanistic aggregate of parts in isolable causal relations." (Ervin László, "Introduction to Systems Philosophy", 1972)

"In no system which shows mental characteristics can any part have unilateral control over the whole. In other words, the mental characteristics of the system are imminent, not in some part, but in the system as a whole." (Gregory Bateson, "Steps to an Ecology of Mind", 1972)

"Holists are distinguished from serialists in terms of the number of inferential statements they produce.[...] It is possible to distinguish the serialist from the holist by a tendency, on the part of a serialist, to preserve the order of the programme presentation format which is absent in the holist. Presented with a holist programme the serialist is unable to preserve the complete order but he does manage to preserve sequentially arranged fragments." (Gordon Pask, "Learning Strategies and Individual Competence", 1972)

"Yet while they exist, regardless of how long, each system has a specific structure made up of certain maintained relationships among its parts, and manifests irreducible characteristics of its own." (Ervin László, "Introduction to Systems Philosophy", 1972)

"In the Systems Age we tend to look at things as part of larger wholes rather than as wholes to be taken apart. This is the doctrine of expansionism. Expansionism brings with it the synthetic mode of thought much as reductionism brought with it." (Russell L Ackoff, "Redesigning the future", 1974)

"Science gets most of its information by the process of reductionism, exploring the details, then the details of the details, until all the smallest bits of the structure, or the smallest parts of the mechanism, are laid out for counting and scrutiny. Only when this is done can the investigation be extended to encompass the whole organism or the entire system. So we say. Sometimes it seems that we take a loss, working this way." (Lewis Thomas, "The Medusa and the Snail: More Notes of a Biology Watcher", 1974)


"When you are confronted by any complex social system […] with things about it that you’re dissatisfied with and anxious to fix, you cannot just step in and set about fixing with much hope of helping. This realization is one of the sore discouragements of our century […] You cannot meddle with one part of a complex system from the outside without the almost certain risk of setting off disastrous events that you hadn’t counted on in other, remote parts. If you want to fix something you are first obliged to understand […] the whole system. […] Intervening is a way of causing trouble." (Lewis Thomas, "The Medusa and the Snail: More Notes of a Biology Watcher", 1974)

"Synergy means behavior of whole systems unpredicted by the behavior of their parts taken separately." (R Buckminster Fuller, "Synergetics: Explorations in the Geometry of Thinking", 1975)

"We have reversed the usual classical notion that the independent 'elementary parts' of the world are the fundamental reality, and that the various systems are merely particular contingent forms and arrangements of these parts. Rather, we say that inseparable quantum interconnectedness of the whole universe is the fundamental reality, and that relatively independent behaving parts are merely particular and contingent forms within this whole." (David Bohm, "On the Intuitive Understanding of Nonlocality as Implied by Quantum Theory", Foundations of Physics Vol 5 (1), 1975)

"If all of the elements in a large system are loosely coupled to one another, then any one element can adjust to and modify a local a local unique contingency without affecting the whole system. These local adaptations can be swift, relatively economical, and substantial." (Karl E Weick, "Educational organizations as loosely coupled systems", 1976)

"In a loosely coupled system there is more room available for self-determination by the actors. If it is argued that a sense of efficacy is crucial for human beings. when a sense of efficacy might be greater in a loosely coupled system with autonomous units than it would be in a tightly coupled system where discretion is limited." (Karl E Weick, "Educational organizations as loosely coupled systems", 1976)

"There is a strong current in contemporary culture advocating ‘holistic’ views as some sort of cure-all […] Reductionism implies attention to a lower level while holistic implies attention to higher level. These are intertwined in any satisfactory description: and each entails some loss relative to our cognitive preferences, as well as some gain [...] there is no whole system without an interconnection of its parts and there is no whole system without an environment." (Francisco Varela, "On being autonomous: The lessons of natural history for systems theory", 1977)

"A threat to any part of the environment is a threat to the whole environment, but we must have a basis of assessment of these threats, not so that we can establish a priority of fears, but so that we can make a positive contribution to improvement and ultimate survival." (Prince Philip, "The Environmental Revolution: Speeches on Conservation, 1962–77", 1978)

"When a mess, which is a system of problems, is taken apart, it loses its essential properties and so does each of its parts. The behavior of a mess depends more on how the treatment of its parts interact than how they act independently of each other. A partial solution to a whole system of problems is better than whole solutions of each of its parts taken separately." (Russell L Ackoff, "The future of operational research is past", The Journal of the Operational Research Society Vol. 30 (2), 1979)

"Given the five parts of the organization - operating core, strategic apex, middle line, technostructure, and support staff - we may now ask how they all function together. In fact, we cannot describe the one way they function together, for research suggests that the linkages are varied and complex. The parts of the organization are joined together by different flows - of authority, of work material, of information, and of decision processes." (Henry Mintzberg, "The structuring of organizations", 1979)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...