16 February 2020

From Parts to Wholes (2000-2009)

"Each part in itself constitutes the whole to which it belongs." (José Saramago, "The Cave The Cave", 2000)

"In the existing sciences much of the emphasis over the past century or so has been on breaking systems down to find their underlying parts, then trying to analyze these parts in as much detail as possible. [...] But just how these components act together to produce even some of the most obvious features of the overall behavior we see has in the past remained an almost complete mystery." (Stephen Wolfram, "A New Kind of Science", 2002)

"Systems thinking means the ability to see the synergy of the whole rather than just the separate elements of a system and to learn to reinforce or change whole system patterns. Many people have been trained to solve problems by breaking a complex system, such as an organization, into discrete parts and working to make each part perform as well as possible. However, the success of each piece does not add up to the success of the whole. to the success of the whole. In fact, sometimes changing one part to make it better actually makes the whole system function less effectively." (Richard L Daft, "The Leadership Experience", 2002)

"A system is an open set of complementary, interacting parts, with properties, capabilities and behaviours of the set emerging both from the parts and from their interactions to synthesize a unified whole." (Derek Hitchins, "Advanced Systems Thinking, Engineering, and Management", 2003)

"Emergence is the phenomenon of properties, capabilities and behaviours evident in the whole system that are not exclusively ascribable to any of its parts." (Derek Hitchins, "Advanced Systems Thinking, Engineering and Management", 2003)

"Emergence is not really mysterious, although it may be complex. Emergence is brought about by the interactions between the parts of a system. The galloping horse illusion depends upon the persistence of the human retina/brain combination, for instance. Elemental gases bond in combination by sharing outer electrons, thereby altering the appearance and behavior of the combination. In every case of emergence, the source is interaction between the parts - sometimes, as with the brain, very many parts - so that the phenomenon defies simple explanation." (Derek Hitchins, "Advanced Systems Thinking, Engineering and Management", 2003)

"There exists an alternative to reductionism for studying systems. This alternative is known as holism. Holism considers systems to be more than the sum of their parts. It is of course interested in the parts and particularly the networks of relationships between the parts, but primarily in terms of how they give rise to and sustain in existence the new entity that is the whole whether it be a river system, an automobile, a philosophical system or a quality system." (Mike Jackson, "Systems Thinking: Creative Holism for Managers", 2003)

"The traditional, scientific method for studying such systems is known as reductionism. Reductionism sees the parts as paramount and seeks to identify the parts, understand the parts and work up from an understanding of the parts to an understanding of the whole. The problem with this is that the whole often seems to take on a form that is not recognizable from the parts. The whole emerges from the interactions between the parts, which affect each other through complex networks of relationships. Once it has emerged, it is the whole that seems to give meaning to the parts and their interactions." (Mike Jackson, "Systems Thinking: Creative Holism for Managers", 2003)

"The progress of science requires the growth of understanding in both directions, downward from the whole to the parts and upward from the parts to the whole." (Freeman J Dyson, "The Scientist As Rebel", 2006)

"This reduction principle - the reduction of the behavior of a complex system to the behavior of its parts - is valid only if the level of complexity of the system is rather low." (Andrzej P Wierzbicki & Yoshiteru Nakamori, "Creative Space: Models of Creative Processes for the Knowledge Civilization Age", Studies in Computational Intelligence Vol.10, 2006)

"The fabric of our complex society is woven too tightly to permit any part of it to be damaged without damaging the whole." (Joe Biden, "Promises to Keep", 2008)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Douglas T Ross - Collected Quotes

"Automatic design has the computer do too much and the human do too little, whereas automatic programming has the human do too much and...