28 February 2020

On Cybernetics (1960-1969)

"Cybernetics is the general science of communication. But to refer to communication is consciously or otherwise to refer to distinguishable states of information inputs and outputs and /or to information being processed within some relatively isolated system." (Henryk Greniewski, "Cybernetics without Mathematics", 1960)

"Cybernetics offers a scientific approach to the cussedness of organisms, suggests how their behaviours can be catalysed and the mystique and rule of thumb banished." (Gordon Pask, "An Approach to Cybernetics", 1961)

"Cybernetics is concerned primarily with the construction of theories and models in science, without making a hard and fast distinction between the physical and the biological sciences. The theories and models occur both in symbols and in hardware, and by 'hardware’ we shall mean a machine or computer built in terms of physical or chemical, or indeed any handleable parts. Most usually we shall think of hardware as meaning electronic parts such as valves and relays. Cybernetics insists, also, on a further and rather special condition that distinguishes it from ordinary scientific theorizing: it demands a certain standard of effectiveness. In this respect it has acquired some of the same motive power that has driven research on modern logic, and this is especially true in the construction and application of artificial languages and the use of operational definitions. Always the search is for precision and effectiveness, and we must now discuss the question of effectiveness in some detail. It should be noted that when we talk in these terms we are giving pride of place to the theory of automata at the expense, at least to some extent, of feedback and information theory." (Frank H George, "The Brain As A Computer", 1962)

"The famous balance of nature is the most extraordinary of all cybernetic systems. Left to itself, it is always self-regulated." (Joseph W Krutch, Saturday Review, 1963)

"The famous balance of nature is the most extraordinary of all cybernetic systems. Left to itself, it is always self-regulated." (Joseph W Krutch, "If You Don't Mind My Saying So...: Essays on Man and Nature", 1964)

"Cybernetics is the science or the art of manipulating defensible metaphors; showing how they may be constructed and what can be inferred as a result of their existence." (Gordon Pask, "The Cybernetics of Human Performance and Learning", 1966)

"[…] cybernetics studies the flow of information round a system, and the way in which this information is used by the system as a means of controlling itself: it does this for animate and inanimate systems indifferently. For cybernetics is an interdisciplinary science, owing as much to biology as to physics, as much to the study of the brain as to the study of computers, and owing also a great deal to the formal languages of science for providing tools with which the behaviour of all these systems can be objectively described." (A Stafford Beer, 1966)

"In the language of cybernetics, maintaining reactions can be outlined as follows: the sensing material receives information about the external environment in the form of coded signals. This information is reprocessed and sent in the form of new signals through defined channels, or networks. This new information brings about an internal reorganization of the system which contributes to the preservation of its integrity. The mechanism which reprocesses the information is called the control system. It consists of a vast number of input and output elements, connected by channels through which the signals are transmitted. The information can be stored in a recall or memory system, which may consist of separate elements, each of which can be in one of several stable states. The particular state of the element varies, under the influence of the input signals. When a number of such elements are in certain specified states, information is, in effect, recorded in the form of a text of finite length, using an alphabet with a finite number of characters. These processes underlie contemporary electronic computing machines and are, in a number of respects, strongly analogous to biological memory systems." (Carl Sagan, "Intelligent Life in the Universe", 1966)

"Now we are looking for another basic outlook on the world - the world as organization. Such a conception - if it can be substantiated - would indeed change the basic categories upon which scientific thought rests, and profoundly influence practical attitudes. This trend is marked by the emergence of a bundle of new disciplines such as cybernetics, information theory, general system theory, theories of games, of decisions, of queuing and others; in practical applications, systems analysis, systems engineering, operations research, etc. They are different in basic assumptions, mathematical techniques and aims, and they are often unsatisfactory and sometimes contradictory. They agree, however, in being concerned, in one way or another, with ‘systems’, ‘wholes’ or ‘organizations’; and in their totality, they herald a new approach." (Ludwig von Bertalanffy, "General System Theory", 1968)

"Cybernetics, based upon the principle of feedback or circular causal trains providing mechanisms for goal-seeking and self-controlling behavior." (Ludwig von Bertalanffy, "General System Theory", 1968)

"A more viable model, one much more faithful to the kind of system that society is more and more recognized to be, is in process of developing out of, or is in keeping with, the modern systems perspective (which we use loosely here to refer to general systems research, cybernetics, information and communication theory, and related fields). Society, or the sociocultural system, is not, then, principally an equilibrium system or a homeostatic system, but what we shall simply refer to as a complex adaptive system." (Walter F Buckley, "Society as a complex adaptive system", 1968)

"According to the science of cybernetics, which deals with the topic of control in every kind of system (mechanical, electronic, biological, human, economic, and so on), there is a natural law that governs the capacity of a control system to work. It says that the control must be capable of generating as much 'variety' as the situation to be controlled. (Anthony S Beer, "Management Science", 1968)

"Perhaps the most important single characteristic of modern organizational cybernetics is this: That in addition to concern with the deleterious impacts of rigidly-imposed notions of what constitutes the application of good 'principles of organization and management' the organization is viewed as a subsystem of a larger system(s), and as comprised itself of functionally interdependent subsystems." (Richard F Ericson, "Organizational cybernetics and human values", 1969)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...