16 February 2020

From Parts to Wholes (1950-1959)

"For scientific endeavor is a natural whole the parts of which mutually support one another in a way which, to be sure, no one can anticipate." (Albert Einstein, "Out of My Later Years", 1950)

"What the worker needs is to see the plant as if he were a manager. Only thus can he see his part, from his part he can reach the whole. This ‘seeing’ is not a matter of information, training courses, conducted plant tours, or similar devices. What is needed is the actual experience of the whole in and through the individual's work." (Peter F Drucker, "The New Society", 1950)

"Every organism represents a system, by which term we mean a complex of elements in mutual interaction. From this obvious statement the limitations of the analytical and summative conceptions must follow. First, it is impossible to resolve the phenomena of life completely into elementary units; for each individual part and each individual event depends not only on conditions within itself, but also to a greater or lesser extent on the conditions within the whole, or within superordinate units of which it is a part. Hence the behavior of an isolated part is, in general, different from its behavior within the context of the whole. [...] Secondly, the actual whole shows properties that are absent from its isolated parts." (Ludwig von Bertalanffy, "Problems of Life", 1952)

"Individualism is the self-affirmation of the individual self as individual self without regard to its participation in its world. As such it is the opposite of collectivism, the self affirmation of the self as part of a larger whole without regard to its character as an individual self." (Paul Tillich, "The Courage to Be The Courage to Be", 1952)

"Every part of the system is so related to every other part that any change in one aspect results in dynamic changes in all other parts of the total system." (Arthur D Hall & Robert E Fagen, "Definition of System", General Systems Vol. 1, 1956)

"In our definition of system we noted that all systems have interrelationships between objects and between their attributes. If every part of the system is so related to every other part that any change in one aspect results in dynamic changes in all other parts of the total system, the system is said to behave as a whole or coherently. At the other extreme is a set of parts that are completely unrelated: that is, a change in each part depends only on that part alone. The variation in the set is the physical sum of the variations of the parts. Such behavior is called independent or physical summativity." (Arthur D Hall & Robert E Fagen, "Definition of System", General Systems Vol. 1, 1956)

"In our definition of system we noted that all systems have interrelationships between objects and between their attributes. If every part of the system is so related to every other part that any change in one aspect results in dynamic changes in all other parts of the total system, the system is said to behave as a whole or coherently. At the other extreme is a set of parts that are completely unrelated: that is, a change in each part depends only on that part alone. The variation in the set is the physical sum of the variations of the parts. Such behavior is called independent or physical summativity." (Arthur D Hall & Robert E Fagen, "Definition of System", General Systems Vol. 1, 1956)

"[...] the concept of 'feedback', so simple and natural in certain elementary cases, becomes artificial and of little use when the interconnexions between the parts become more complex. When there are only two parts joined so that each affects the other, the properties of the feedback give important and useful information about the properties of the whole. But when the parts rise to even as few as four, if every one affects the other three, then twenty circuits can be traced through them; and knowing the properties of all the twenty circuits does not give complete information about the system. Such complex systems cannot be treated as an interlaced set of more or less independent feedback circuits, but only as a whole. For understanding the general principles of dynamic systems, therefore, the concept of feedback is inadequate in itself. What is important is that complex systems, richly cross-connected internally, have complex behaviours, and that these behaviours can be goal-seeking in complex patterns." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"It is clear to all that the animal organism is a highly complex system consisting of an almost infinite series of parts connected both with one another and, as a total complex, with the surrounding world, with which it is in a state of equilibrium." (Ivan P Pavlov, "Experimental psychology, and other essays", 1957)

"[…] the comprehension of a structure requires intuitive knowledge of the ethology of its resistance and of its constituent materials." (Eduardo Torroja, "Philosophy of Structures/;, 1958)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...