10 April 2021

Catastrophe Theory III

"On the plane of philosophy properly speaking, of metaphysics, catastrophe theory cannot, to be sure, supply any answer to the great problems which torment mankind. But it favors a dialectical, Heraclitean view of the universe, of a world which is the continual theatre of the battle between 'logoi', between archetypes." (René F Thom, "Catastrophe Theory: Its Present State and Future Perspectives", 1975)

"At the large scale where many processes and structures appear continuous and stable much of the time, important changes may occur discontinuously. When only a few variables are involved, as well as an optimizing process, the event may be analyzed using catastrophe theory. As the number of variables in- creases the bifurcations can become more complex to the point where chaos theory becomes the relevant approach. That chaos theory as well as the fundamentally discontinuous quantum processes may be viewed through fractal eyeglasses can also be admitted. We can even argue that a cascade of bifurcations to chaos contains two essentially structural catastrophe points, namely the initial bifurcation point at which the cascade commences and the accumulation point at which the transition to chaos is finally achieved." (J Barkley Rosser Jr., "From Catastrophe to Chaos: A General Theory of Economic Discontinuities", 1991)

"Catastrophe theory is a local theory, telling us what a function looks like  in a small neighborhood of a critical point; it says nothing about what the function may be doing far away from the singularity. Yet most of the applications of the theory [...]  involve extrapolating these rock-solid, local results to regions that may  well be distant in time and space from the singularity." (John L Casti, "Five Golden Rules", 1995)

"Chaos and catastrophe theories are among the most interesting recent developments in nonlinear modeling, and both have captured the interests of scientists in many disciplines. It is only natural that social scientists should be concerned with these theories. Linear statistical models have proven very useful in a great deal of social scientific empirical analyses, as is evidenced by how widely these models have been used for a number of decades. However, there is no apparent reason, intuitive or otherwise, as to why human behavior should be more linear than the behavior of other things, living and nonliving. Thus an intellectual movement toward nonlinear models is an appropriate evolutionary movement in social scientific thinking, if for no other reason than to expand our paradigmatic boundaries by encouraging greater flexibility in our algebraic specifications of all aspects of human life." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"[...] chaos and catastrophe theories per se address behavioral phenomena that are consequences of two general types of nonlinear dynamic behavior. In the most elementary of behavioral terms, chaotic phenomena are a class of deterministic processes that seem to mimic random or stochastic dynamics. Catastrophe phenomena, on the other hand, are a class of dynamic processes that exhibit a sudden and large scale change in at least one variable in correspondence with relatively small changes in other variables or, in some cases, parameters." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"Chaos and catastrophe theories directly address the social scientists' need to understand classes of nonlinear complexities that are certain to appear in social phenomena. The probabilistic properties of many chaos and catastrophe models are simply not known, and there is little likelihood that general procedures will be developed soon to alleviate the difficulties inherent with probabilistic approaches in such complicated settings." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"Fundamental to catastrophe theory is the idea of a bifurcation. A bifurcation is an event that occurs in the evolution of a dynamic system in which the characteristic behavior of the system is transformed. This occurs when an attractor in the system changes in response to change in the value of a parameter. A catastrophe is one type of bifurcation. The broader framework within which catastrophes are located is called dynamical bifurcation theory." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"Probably the most important reason that catastrophe theory received as much popular press as it did in the mid-1970s is not because of its unchallenged mathematical elegance, but because it appears to offer a coherent mathematical framework within which to talk about how discontinuous behaviors - stock market booms and busts or cellular differentiation, for instance - might emerge as the result of smooth changes in the inputs to a system, things like interest rates in a speculative market or the diffusion rate of chemicals in a developing embryo. These kinds of changes are often termed bifurcations, and playa central role in applied mathematical modeling. Catastrophe theory enables us to understand more clearly how - and why - they occur." (John L Casti, "Five Golden Rules", 1995)

"The goal of catastrophe theory is to classify smooth functions with degenerate critical points, just as Morse's Theorem gives us a complete classification for Morse functions. The difficulty, of course, is that there are a lot more ways for critical points to 'go bad' than there are for them to stay 'nice'. Thus, the classification problem is much harder for functions having degenerate critical points, and has not yet been fully carried out for all possible types of degeneracies. Fortunately, though, we can obtain a partial classification for those functions having critical points that are not too bad. And this classification turns out to be sufficient to apply the results to a wide range of phenomena like the predator-prey situation sketched above, in which 'jumps' in the system's biomass can occur when parameters describing the process change only slightly." (John L Casti, "Five Golden Rules", 1995)

"The reason catastrophe theory can tell us about such abrupt changes in a system's behavior is that we usually observe a dynamical system when it's at or near its steady-state, or equilibrium, position. And under various assumptions about the nature of the system's dynamical law of motion, the set of all possible equilibrium states is simply the set of critical points of a smooth function closely related to the system dynamics. When these critical points are nondegenerate, Morse's Theorem applies. But it is exactly when they become degenerate that the system can move sharply from one equilibrium position to another. The Thorn Classification Theorem tells when such shifts will occur and what direction they will take." (John L Casti, "Five Golden Rules", 1995)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...