21 April 2021

On Measurement (1930-1939)

"Every sentence in order to have definite scientific meaning must be practically or at least theoretically verifiable as either true or false upon the basis of experimental measurements either practically or theoretically obtainable by carrying out a definite and previously specified operation in the future. The meaning of such a sentence is the method of its verification." (Walter A Shewhart, "Economic Control of Quality of Manufactured Product", 1931)

"Physics is an exact Science and hence depends upon measurement, while all measurement itself requires sense-perception. Consequently all the ideas employed in Physics are derived from the world of sense-perception." (Max Planck, "The Universe in the Light of Modern Physics", 1931)

"It goes without saying that the laws of nature are in themselves independent of the properties of the instruments with which they are measured. Therefore in every observation of natural phenomena we must remember the principle that the reliability of the measuring apparatus must always play an important role." (Max Planck, "Where is Science Going?", 1932)

"While it is true that theory often sets difficult, if not impossible tasks for the experiment, it does, on the other hand, often lighten the work of the experimenter by disclosing cogent relationships which make possible the indirect determination of inaccessible quantities and thus render difficult measurements unnecessary." (Georg Joos, "Theoretical Physics", 1934)

"Maximal knowledge of a total system does not necessarily include total knowledge of all its parts, not even when these are fully separated from each other and at the moment are not influencing each other at all. Thus it may be that some part of what one knows may pertain to relations […] between the two subsystems (we shall limit ourselves to two), as follows: if a particular measurement on the first system yields this result, then for a particular measurement on the second the valid expectation statistics are such and such; but if the measurement in question on the first system should have that result, then some other expectation holds for that one the second. […] In this way, any measurement process at all or, what amounts to the same, any variable at all of the second system can be tied to the not-yet-known value of any variable at all of the first, and of course vice versa also." (Erwin Schrödinger, "The Present Situation in Quantum Mechanics", 1935)

"It is wholly absurd to maintain that an intellectual experiment is important only in proportion as it can be checked by measurement; for if this were so, there could be no exact geometrical proof. A line drawn on paper is not really a line but a more or less narrow strip, and a point a larger or smaller spot." (Max Planck, "The Philosophy of Physics", 1936)

[...] great as may be the potency of this [the experimental method], or of the preceding methods, there is yet another one so vital that, if lacking it, any study is thought by many authorities not to be scientific in the full sense of the word. This further and crucial method is that of measurement [...]" (Charles Spearman, "Psychology Down the Ages" Vol. 1, 1937)

"It is important to realize that it is not the one measurement, alone, but its relation to the rest of the sequence that is of interest." (William E Deming, "Statistical Adjustment of Data", 1938)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Literature: On Wisdom (From Fiction to Science-Fiction)

"The highest wisdom has but one science - the science of the whole-the science explaining the whole creation and man's place in it....