29 April 2021

On Facts (1930-1939)

"A system is said to be coherent if every fact in the system is related every other fact in the system by relations that are not merely conjunctive. A deductive system affords a good example of a coherent system." (Lizzie S Stebbing, "A modern introduction to logic", 1930)

"It seems that the human mind has first to construct forms independently, before we can find them in things. Kepler’s marvelous achievement is a particularly fine example of the truth that knowledge cannot spring from experience alone, but only from the comparison of the inventions of the intellect with observed fact." (Albert Einstein, 1930)

"Science works by the slow method of the classification of data, arranging the detail patiently in a periodic system into groups of facts, in series like the strata of the rocks. For each series there must be a vocabulary of special words which do not always make good sense when used in another series. But the laws of periodicity seem to hold throughout, among the elements and in every sphere of thought, and we must learn to co-ordinate the whole through our new conception of the reign of relativity." (William H Pallister, "Poems of Science", 1931)

"The common view of science is that it is a sort of machine for increasing the race’s store of dependable facts. It is that only in part; in even larger part it is a machine for upsetting undependable facts." (Will Durant, 1931)

"The distinguishing feature of modern scientific thought lies in the fact that it begins by discarding all a priori conceptions about the nature of reality - or about the ultimate nature of the universe - such as had characterized practically all Greek philosophy and all medieval thinking as well, and takes instead, as its starting point, well-authenticated, carefully tested experimental facts, no matter whether these facts seen at the moment to fit into any general philosophical scheme or not - that is, no matter whether they seem at the moment to be reasonable or not." (Robert A Millikan, "Professor Einstein at the California Institute of Technology", Science Vol. 73 (1893), 1931)

"The steady progress of physics requires for its theoretical formulation a mathematics which get continually more advanced. […] it was expected that mathematics would get more and more complicated, but would rest on a permanent basis of axioms and definitions, while actually the modern physical developments have required a mathematics that continually shifts its foundation and gets more abstract. Non-Euclidean geometry and noncommutative algebra, which were at one time were considered to be purely fictions of the mind and pastimes of logical thinkers, have now been found to be very necessary for the description of general facts of the physical world. It seems likely that this process of increasing abstraction will continue in the future and the advance in physics is to be associated with continual modification and generalisation of the axioms at the base of mathematics rather than with a logical development of any one mathematical scheme on a fixed foundation." (Paul A M Dirac, "Quantities singularities in the electromagnetic field", Proceedings of the Royal Society of London, 1931)

"The essential fact is simply that all the pictures which science now draws of nature, and which alone seem capable of according with observational fact, are mathematical pictures." (Sir James H Jeans, "The Mysterious Universe", 1932)

"Even these humble objects reveal that our reality is not a mere collocation of elemental facts, but consists of units in which no part exists by itself, where each part points beyond itself and implies a larger whole. Facts and significance cease to be two concepts belonging to different realms, since a fact is always a fact in an intrinsically coherent whole. We could solve no problem of organization by solving it for each point separately, one after the other; the solution had to come for the whole. Thus we see how the problem of significance is closely bound up with the problem of the relation between the whole and its parts. It has been said: The whole is more than the sum of its parts. It is more correct to say that the whole is something else than the sum of its parts, because summing is a meaningless procedure, whereas the whole-part relationship is meaningful." (Kurt Koffka, "Principles of Gestalt Psychology", 1935)

"In experimental science facts of the greatest importance are rarely discovered accidentally: more frequently new ideas point the way towards them." (Erwin Schrödinger, "Science and the Human Temperament", 1935)

"Mathematics is the science of number and space. It starts from a group of self-evident truths and by infallible deduction arrives at incontestable conclusions […] the facts of mathematics are absolute, unalterable, and eternal truths." (E Russell Stabler, "An Interpretation and Comparison of Three Schools of Thought in the Foundations of Mathematics", The Mathematics Teacher, Vol 26, 1935)

"Science is the attempt to discover, by means of observation, and reasoning based upon it, first, particular facts about the world, and then laws connecting facts with one another and (in fortunate cases) making it possible to predict future occurrences." (Bertrand Russell, "Religion and Science, Grounds of Conflict", 1935)

"[while] the traditional way is to regard the facts of science as something like the parts of a jig-saw puzzle, which can be fitted together in one and only one way, I regard them rather as the tiny pieces of a mosaic, which can be fitted together in many ways. A new theory in an old subject is, for me, a new mosaic pattern made with the pieces taken from an older pattern. [...] Theories come into fashion and theories go out of fashion, but the facts connected with them stay." (William H George, "The Scientist in Action", 1936)

"The fundamental gospel of statistics is to push back the domain of ignorance, prejudice, rule-of-thumb, arbitrary or premature decisions, tradition, and dogmatism and to increase the domain in which decisions are made and principles are formulated on the basis of analyzed quantitative facts." (Robert W Burgess, "The Whole Duty of the Statistical Forecaster", Journal of the American Statistical Association , Vol. 32, No. 200, 1937)

"When an active individual of sound common sense perceives the sordid state of the world, desire to change it becomes the guiding principle by which he organizes given facts and shapes them into a theory. The methods and categories as well as the transformation of the theory can be understood only in connection with his taking of sides. This, in turn, discloses both his sound common sense and the character of the world. Right thinking depends as much on right willing as right willing on right thinking." (Max Horkheimer, "The Latest Attack on Metaphysics", 1937)

"Matter-of-fact is an abstraction, arrived at by confining thought to purely formal relations which then masquerade as the final reality. This is why science, in its perfection, relapses into the study of differential equations. The concrete world has slipped through the meshes of the scientific net." (Alfred N Whitehead, "Modes of Thought", 1938)

"With the help of physical theories we try to find our way through the maze of observed facts, to order and understand the world of our sense impressions." (Albert Einstein & Leopold Infeld, "The Evolution of Physics", 1938)

"Graphs are all inclusive. No fact is too slight or too great to plot to a scale suited to the eye. Graphs may record the path of an ion or the orbit of the sun, the rise of a civilization, or the acceleration of a bullet, the climate of a century or the varying pressure of a heart beat, the growth of a business, or the nerve reactions of a child." (Henry D Hubbard [foreword to Willard C Brinton, "Graphic Presentation", 1939)])

"The graphic art depicts magnitudes to the eye. It does more. It compels the seeing of relations. We may portray by simple graphic methods whole masses of intricate routine, the organization of an enterprise, or the plan of a campaign. Graphs serve as storm signals for the manager, statesman, engineer; as potent narratives for the actuary, statist, naturalist; and as forceful engines of research for science, technology and industry. They display results. They disclose new facts and laws. They reveal discoveries as the bud unfolds the flower."  (Henry D Hubbard [foreword to Willard C Brinton, "Graphic Presentation", 1939)])

"The graphic language is modern. We are learning its alphabet. That it will develop a lexicon and a literature marvelous for its vividness and the variety of application is inevitable. Graphs are dynamic, dramatic. They may epitomize an epoch, each dot a fact, each slope an event, each curve a history. Wherever there are data to record, inferences to draw, or facts to tell, graphs furnish the unrivalled means whose power we are just beginning to realize and to apply."  (Henry D Hubbard [foreword to Willard C Brinton, "Graphic Presentation", 1939)])

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...