21 April 2021

On Measurement (1850-1859)

"In the extension of space-construction to the infinitely great, we must distinguish between unboundedness and infinite extent; the former belongs to the extent relations, the latter to the measure-relations. That space is an unbounded threefold manifoldness, is an assumption which is developed by every conception of the outer world; according to which every instant the region of real perception is completed and the possible positions of a sought object are constructed, and which by these applications is forever confirming itself. The unboundedness of space possesses in this way a greater empirical certainty than any external experience. But its infinite extent by no means follows from this; on the other hand if we assume independence of bodies from position, and therefore ascribe to space constant curvature, it must necessarily be finite provided this curvature has ever so small a positive value. If we prolong all the geodesies starting in a given surface-element, we should obtain an unbounded surface of constant curvature, i.e., a surface which in a flat manifoldness of three dimensions would take the form of a sphere, and consequently be finite." (Bernhard Riemann, "On the hypotheses which lie at the foundation of geometry", 1854)

"Measure consists in the superposition of the magnitudes to be compared; it therefore requires a means of using one magnitude as the standard for another. In the absence of this, two magnitudes can only be compared when one is a part of the other; in which case we can only determine the more or less and not the how much." (Bernhard Riemann, "On the hypotheses which lie at the foundation of geometry", 1854)

"The conception of the inconceivable [imaginary], this measurement of what not only does not, but cannot exist, is one of the finest achievements of the human intellect. No one can deny that such imaginings are indeed imaginary. But they lead to results grander than any which flow from the imagination of the poet. The imaginary calculus is one of the master keys to physical science. These realms of the inconceivable afford in many places our only mode of passage to the domains of positive knowledge. Light itself lay in darkness until this imaginary calculus threw light upon light. And in all modern researches into electricity, magnetism, and heat, and other subtile physical inquiries, these are the most powerful instruments." (Thomas Hill, "The Imagination in Mathematics", North American Review Vol. 85, 1857)

"The purely formal sciences, logic and mathematics, deal with such relations which are independent of the definite content, or the substance of the objects, or at least can be. In particular, mathematics involves those relations of objects to each other that involve the concept of size, measure, number." (Hermann Hankel, "Theorie der Complexen Zahlensysteme", 1867)

"Nothing is more certain in scientific method than that approximate coincidence alone can be expected. In the measurement of continuous quantity perfect correspondence must be accidental, and should give rise to suspicion rather than to satisfaction." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"Accurate and minute measurement seems to the nonscientific imagination a less lofty and dignified work than looking for something new. But nearly all the grandest discoveries of science have been but the rewards of accurate measurement and patient long contained labor in the minute sifting of numerical results." (William T Kelvin, "Report of the British Association For the Advancement of Science" Vol. 41, 1871)

"The union of the mathematician with the poet, fervor with measure, passion with correctness, this surely is the ideal." (William James, "Clifford's Lectures and Essays", 1879)

"Nothing that we can measure is inconceivably large or inconceivably small in physical science." (William T Kelvin, 1883)

"There cannot be a greater mistake than that of looking superciliously upon the practical applications of science. The life and soul of science is its practical application; and just as the great advances in mathematics have been made through the desire of discovering the solution of problems which were of a highly practical kind in mathematical science, so in physical science many of the greatest advances that have been made from the beginning of the world to the present time have been made in earnest desire to turn the knowledge of the properties of matter to some purpose useful to mankind." (William T Kelvin, "Electrical Units of Measurement", 1883)

"She [Nature] works with reference to no measure of time, no limit of space, and with an abundance of material not expressed by exhaustless." (John Burroughs, "Birds and Poets With Other Papers", 1884)

"I call a sign which stands for something merely because it resembles it, an icon. Icons are so completely substituted for their objects as hardly to be distinguished from them. Such are the diagrams of geometry. A diagram, indeed, so far as it has a general signification, is not a pure icon; but in the middle part of our reasonings we forget that abstractness in great measure, and the diagram is for us the very thing. So in contemplating a painting, there is a moment when we lose the consciousness that it is not the thing, the distinction of the real and the copy disappears, and it is for the moment a pure dream, - not any particular existence, and yet not general. At that moment we are contemplating an icon." (Charles S Peirce, "On The Algebra of Logic : A Contribution to the Philosophy of Notation" in The American Journal of Mathematics 7, 1885)

"Physical research by experimental methods is both a broadening and a narrowing field. There are many gaps yet to be filled, data to be accumulated, measurements to be made with great precision, but the limits within which we must work are becoming, at the same time, more and more defined." (Elihu Thomson, "Annual Report of the Board of Regents of the Smithsonian Institution", 1899)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

A Picture's Worth

"The drawing shows me at a glance what would be spread over ten pages in a book." (Ivan Turgenev, 1862) [2] "Sometimes, half ...